Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
=\(\frac{3\left(\frac{1}{1}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{2}{4}+\frac{2}{6}+\frac{2}{8}}{5\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}\)
=\(\frac{3}{5}+\frac{2\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}{5\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}\)=\(\frac{3}{5}+\frac{2}{5}=\frac{5}{5}=1\)
Giải:
A = (4n + 5) / (5n + 4)
Giả sử (4n + 5) và (5n + 4) đều chia hết số nguyên tố d
=> 5(4n + 5) - 4(5n + 4) chia hết cho d
Mà 5(4n + 5) - 4(5n + 4) = 9
=> 9 chia hết cho d
=> d có thể là số 3 ( vì d là số nguyên tố)
Nếu (5n + 4) chia hết cho 3 thì (4n + 5) cũng sẽ chia hết cho 3
nên ta chỉ cần xét (5n + 4) chia hết cho 3
♥ xét trường hợp (5n + 4) chia hết cho 3
Do (5n + 4) chia hết cho 3
=> [ (5n + 4) + 6 ] chia hết cho 3 ( vì 6 cũng chia hết cho 3)
=> [ 5(n + 2) ] chia hết cho 3
=> (n + 2) chia hết cho 3 ( do 5 không chia hết cho 3)
=> (n + 2) = 3k ( với k thuộc N )
=> n = 3k - 2 ( với k thuộc N )
Vậy : n = 3k - 2 ( với k thuộc N ) thì A có thể rút gọn được.
+++++++++++
Thử lại xem . Ví dụ : cho k = 2 => n = 4
=> A = (4.4 + 5) / (5.4 + 4) = 21/24
A có thể rút gọn : A = 7/8
♪_♫ Một phân số chỉ có thể rút gọn khi Ước số chung của mẫu số và tử số khác 1 và -1
b) Áp dụng tính chất
\(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)
Ta có: \(B=\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10.\left(10^{15}+1\right)}{10.\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)
\(\Rightarrow B< A\)
\(B< 1\Rightarrow\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)
\(\Rightarrow A>B\)
Ta có :
\(13A=\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=\frac{13^{16}+1}{13^{16}+1}+\frac{12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(13B=\frac{13^{17}+13}{13^{17}+1}=\frac{13^{17}+1+12}{13^{17}+1}=\frac{13^{17}+1}{13^{17}+1}+\frac{12}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Vì \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\) nên \(1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\) hay \(13A>13B\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Phùng Minh Quân ơi tớ cảm ơn nhưng tớ tính máy tính ra A = B ạ ( ko có ý gì đâu )
Gọi \(\frac{13^{15}+1}{13^{16}+1}\)là S, \(\frac{13^{16}+1}{13^{17}+1}\)là X
\(13\cdot S=13\cdot\frac{13^{15+1}}{13^{16}+1}=\frac{13.\left(13^{15}+1\right)}{13^{16}+1}=\frac{13^{16}+13}{13^{16}+1}\)\(=\frac{13^{16}+1+12}{13^{16}+1}=\frac{13^{16}+1}{13^{16}+1}+\frac{12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(13\cdot X=13.\frac{13^{16}+1}{13^{17}+1}=\frac{13\cdot\left(13^{16}+1\right)}{13^{17}+1}=\frac{13^{17}+13}{13^{17}+1}\)\(=\frac{13^{17}+1+12}{13^{17}+1}=\frac{13^{17}+1}{13^{17}+1}+\frac{12}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Do \(1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)\(\rightarrow13\cdot S>13\cdot X\)\(\rightarrow S>X\)