K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2016

de ot la dau = nha

19 tháng 4 2015

Dấu < nhé!

2 tháng 5 2016

2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

13 tháng 2 2018

A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)

B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)

Rồi bạn tự so sánh nha

14 tháng 4 2016

Ta có : P = 2014/2015 + 2015/2016 + 2016/2017 < 2014/(2015+2016+2017) + 2015/(2015+2016+2017) + 2016/(2015+2016+2017) = Q

Suy ra : P < Q

Vậy P < Q.

14 tháng 4 2016

Ta thấy:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)>\(\frac{2014+2015+2016}{2015+2016+2017}\)
Vậy     :P>Q

16 tháng 6 2016

\(y=\frac{2014}{\frac{2015}{\frac{2015}{2016}}}=\frac{2014}{2015}.\frac{2015}{2016}=\frac{1007}{1008}=1-\frac{1}{2008}\)

\(\frac{2014}{2015}=1-\frac{1}{2015}\)

Vì \(\frac{1}{2008}>\frac{1}{2015}\)nên \(\frac{1007}{1008}< \frac{2014}{2015}\)

Vậy A>y

16 tháng 6 2016

y < 1 < A. 

Bạn chứng minh điều đó nhé!

14 tháng 2 2016

mình sẽ sử dụng cách tìm phần bù, phần hơn để biết được phân số nào lớn hơn nhé !

1-2014/2015= 2015/2015 - 2014/2015 = 1/ 2015

1 - 2015 /2016 = 2016/2016 - 2015/2016 = 1/2016

ta so sánh : 1/2016<1/2015. vậy phân số 2015/2016 > 2014/2015 vì 2015/2016 cần ít phần bu hơn nên phân số đó lớn hơn

14 tháng 2 2016

Ta có 1- 2014/2015 = 1/2015

1 - 2015/2016 = 1/2016

Vì 1/2015 > 1/2016 nên 2014/2015 < 2015/2016

19 tháng 4 2015

phân tích B ta có 

B = \(\frac{2014+2015}{2015+2016}=\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\) 

vì  \(\frac{2014}{2015+2016}

4 tháng 5 2016

A=2014/2015+2015/2016.                                                                       B=(2014+2015)/(2015+2016)

A=1-1/2015+1-1/2016.                                                                             B=1-2/4031

A=1+1-(2015+2016)/(2015x2016).           So sánh

A=1+1-(4031)/(2015x2x1008).                   1+1-[4031/(4030x1008)]>1;1-2/4031<1.

A=1+1-[4031/(4030x1008)].                       Vậy 1+1-[4031/(4030x1008)]>1-2/4031.

                                                =>A>B

14 tháng 5 2016

Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)

\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)

Khi đó  \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
 

14 tháng 5 2016

Bạn xem lời giải của mình nhé:

Giải:

Bài 2:

Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)

\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

 \(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)

Chúc bạn học tốt!hihi