\(\dfrac{2^{2006}+7}{2^{2004}+7}\) và \(\dfrac{2^{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2017

Đặt\(A=\dfrac{2^{2006}+7}{2^{2004}+7};B=\dfrac{2^{2003}+1}{2^{2001}+1}\)

\(A-B=\dfrac{2^{2006}+7}{2^{2004}+7}-\dfrac{2^{2003}+1}{2^{2001}+1}\)

\(=\dfrac{2^{4007}+2^{2006}+7.2^{2001}+7-2^{4007}+2^{2004}+7-2^{2003}.7}{\left(2^{2001}+1\right)\left(2^{2004}+7\right)}\)

\(=\dfrac{2^{2001}\left(7+2^5+2^3-7.2^2\right)}{\left(2^{2001}+1\right)\left(2^{2004}+7\right)}\)

=\(\dfrac{19.2^{2001}+14}{\left(2^{2001}+1\right)\left(2^{2004}+7\right)}>0\)

\(\Rightarrow A>B\)

Chúc Bạn Học Tốt Và Đạt Nhiều Thành Tích Tốt Trong Học Tập!

23 tháng 8 2017

Tks pn nha,Nguyễn Nhã Hiếu!

30 tháng 11 2016

Đầu tiên bạn đi chứng minh bài toán:a>b thì \(\frac{a}{b}>\frac{a+m}{b+m}\) 

rồi áp dụng vào bài toán này

\(\frac{2^{2006}+7}{2^{2004}+7}>\frac{2^{2006}+7+1}{2^{2004}+7+1}=\frac{2^{2006}+8}{2^{2004}+8}=\frac{2^3\left(2^{2003}+1\right)}{2^3\left(2^{2001}+1\right)}=\frac{2^{2003}+1}{2^{2001}+1}\)

Vậy \(\frac{2^{2006}+7}{2^{2004}+7}>\frac{2^{2003}+1}{2^{2001}+1}\)

Đấy thế là xong!

19 tháng 2 2017

A B C D 30 m 675 m^2 E

Đặt các điểm như hình trên thì AB = 0,6 CD ; AB + 30 m = CD (BE = 30 m) ; SABCD + 675 m2 = SAECD (SBEC = 675 m2)

AECD là hình chữ nhật nên CE là đường cao tam giác BEC ; CE = AD 

=> AD = 2 x SBEC : BE = 2 x 675 : 30 = 45 (m)
AB + 30 m = CD mà AB = 0,6 CD nên 0,6 CD + 30 m = CD => 0,4 CD = 30 m => CD = 75 m => AB = 45 m 

=> SABCD = (AB + CD) x AD : 2 = (75 + 45) x 45 : 2 = 2700 (m2)

A < B nhá !!!

27 tháng 7 2017

thanks nha

31 tháng 10 2022

6:

\(4D=2^2+2^4+...+2^{202}\)

=>3D=2^202-1

hay \(D=\dfrac{2^{202}-1}{3}\)

7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)

3 tháng 10 2018

a, \(A=\dfrac{10^{15}+1}{10^6+1}>1\);\(B=\dfrac{10^6+1}{10^{17}+1}< 1\)

\(A>B\)

b, \(D=\dfrac{2^{2007}+3}{2^{2006}-1}=\dfrac{2^{2008}+6}{2^{2007}-2}\)

Ta có : \(\dfrac{2^{2008}-3}{2^{2007}-1}< \dfrac{2^{2008}-3}{2^{2007}-2}< \dfrac{2^{2008}+6}{2^{2007}-2}\)

\(C< D\)

c, \(M=\dfrac{3}{8^3}+\dfrac{7}{8^4}=\dfrac{3}{8^3}+\dfrac{3}{8^4}+\dfrac{4}{8^4}\)

\(N=\dfrac{7}{8^3}+\dfrac{3}{8^4}=\dfrac{3}{8^3}+\dfrac{4}{8^3}+\dfrac{3}{8^4}\)

\(\dfrac{4}{8^4}< \dfrac{4}{8^3}\)

\(M< N\)

4 tháng 10 2018
Lũy thừa của một số hữu tỉ (tiếp theo...)Lũy thừa của một số hữu tỉ (tiếp theo...) Lũy thừa của một số hữu tỉ (tiếp theo...)