Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)
Ta có:
\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)
Từ 3 điều trên suy ra : A < B
\(b,S=\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}\)
\(\text{Ta có: }\frac{2007}{2008}< 1\)
\(\frac{2008}{2009}< 1\)
\(\frac{2009}{2010}< 1\)
\(\frac{2010}{2011}< 1\)
\(\Rightarrow\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}< 1+1+1+1\)
\(\Rightarrow\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}< 4\)
Lấy 1 - trừ từng phân số nha
mk ko muốn viết lời giải nhưng mk nói luôn kết quả là 2 phép tính bằng nhau
Bài 2 :
\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}\)và 4
2009/2010 < 1
2010/2011 < 1
2011/2012 < 1
Cộng vế với vế ta được:
2009/2010 + 2010/2011 + 2011/2012 < 1 + 1 + 1
⇒ 2009/2010 + 2010/2011 + 2011/2012 < 3