Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2012}{2011}=1-\frac{1}{2011}\)
\(\frac{2011}{2010}=1-\frac{1}{2010}\)
Vì \(\frac{1}{2011}>\frac{1}{2010}\)nên \(\frac{2012}{2011}>\frac{2011}{2010}\)
\(\Rightarrow\frac{2012}{2011}>\frac{2011}{2010}\)
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
\(\dfrac{2011}{2010}< \dfrac{2011+1}{2010+1}=\dfrac{2012}{2011}\)
\(\Rightarrow\dfrac{2011}{2010}< \dfrac{2012}{2011}\)
\(\dfrac{2012}{2011}và\dfrac{2011}{2010}\\ \dfrac{2012}{2011}-1=\dfrac{1}{2011}\\ \dfrac{2011}{2010}-1=\dfrac{1}{2010}\\ \)
Vì \(\dfrac{1}{2011}< \dfrac{1}{2010}\\ \Rightarrow\dfrac{2012}{2011}< \dfrac{2011}{2010}\)
\(\dfrac{2010}{2011}\) và \(\dfrac{2011}{2012}\)
Ta có:
\(1-\dfrac{2010}{2011}=\dfrac{1}{2011}\)
\(1-\dfrac{2011}{2012}=\dfrac{1}{2012}\)
Vì \(\dfrac{1}{2011}>\dfrac{1}{2012}\) nên \(\dfrac{2010}{2011}< \dfrac{2011}{2012}\)
A=2010/2009+2011/2010+2012/2011+2009/2012=4,00000148
vay A lon hon 4
A>4
a bang 2010/2009cong2012/2011cong2009/2012 bang4,00000148 vay A LON HON 4
giải giúp mk với mk đang cần gấp lắm!!! Mong các bạn giúp đỡ mk với!!!
\(A=\frac{2010}{2009}+\frac{2011}{2010}+\frac{2012}{2011}+\frac{2009}{2012}=\left(1+\frac{1}{2009}\right)+\left(1+\frac{1}{2010}\right)+\left(1+\frac{1}{2011}\right)+\frac{2009}{2012}>\left(1+\frac{1}{2012}\right)+\left(1+\frac{1}{2012}\right)+\left(1+\frac{1}{2012}\right)+\frac{2009}{2012}=\left(1+1+1\right)+\left(\frac{1}{2012}+\frac{1}{2012}+\frac{1}{2012}+\frac{2009}{2012}\right)=3+1=4\)Vì 1/2009,1/2010,1/2011>1/2012
Vậy A>4
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
Ta có :
\(\frac{2012}{2011}-1=\frac{1}{2011}\)
\(\frac{2011}{2010}-1=\frac{1}{2010}\)
Vì\(\frac{1}{2011}< \frac{1}{2010}\)nên\(\frac{2012}{2011}< \frac{2011}{2010}\)