Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A= \(\frac{7^{2015}+1}{7^{2017}+1}\)
B= \(\frac{7^{2017}+1}{7^{2019}+1}\)
Ta có A= \(\frac{7^2\left(7^{2015}+1\right)}{7^2\left(7^{2017}+1\right)}\)
= \(\frac{7^{2017}+49}{7^{2019}+49}\)
= \(\frac{7^{2017}+1+48}{7^{2019}+1+48}\)
Vì \(\frac{7^{2017}+1+48}{7^{2019}+1+48}\)>\(\frac{7^{2017}+1}{7^{2019}+1}\)
=> A>B
K MK NHA !
Bạn tham khảo nhé
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{7^{2017}+1}{7^{2019}+1}< \frac{7^{2017}+1+48}{7^{2019}+1+48}=\frac{7^{2017}+49}{7^{2019}+49}=\frac{7^2\left(7^{2015}+1\right)}{7^2\left(7^{2017}+1\right)}=\frac{7^{2015}+1}{7^{2017}+1}=B\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
a) \(\frac{120}{115}-1=\frac{5}{115}\) ; \(1-\frac{175}{170}=\frac{5}{170}\)
Vì \(\frac{5}{115}>\frac{5}{170}\) nên \(\frac{120}{115}
Ta có :
\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow P>Q\)
Chúc bạn học tốt !!!
vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q
Vậy P<Q.
mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá
Ta có : \(0< \frac{2017}{2018}< 1\) nên \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)
\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)
Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)
Vậy B>A
Sửa đề:
Nếu:
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{69^{2015}+1}{69^{2017}+1}< 1\)
\(B< \dfrac{69^{2015}+1+68}{69^{2017}+1+68}\Leftrightarrow B< \dfrac{69^{2015}+69}{69^{2017}+69}\)
\(B< \dfrac{69\left(69^{2014}+1\right)}{69\left(69^{2016}+1\right)}\Leftrightarrow B< \dfrac{69^{2014}+1}{69^{2016}+1}=A\)
\(B< A\)
Ta có:\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì \(\hept{\begin{cases}\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\\\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\\\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\end{cases}}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow P>Q\)
Vậy P > Q
\(\dfrac{2017}{2019}=1-\dfrac{2}{2019}\\ \dfrac{2015}{2017}=1-\dfrac{2}{2017}\\ Vì:\dfrac{2}{2019}< \dfrac{2}{2017}\Rightarrow1-\dfrac{2}{2019}>1-\dfrac{2}{2017}\\ \Rightarrow\dfrac{2017}{2019}>\dfrac{2015}{2017}\)