K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

\(\left\{{}\begin{matrix}a=\dfrac{35}{49}=\dfrac{5}{7}\\b=\sqrt{\dfrac{5^2}{7^2}}=\dfrac{5}{7}\\c=\dfrac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\dfrac{5+35}{7+49}=\dfrac{5}{7}\\d=\dfrac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\dfrac{5-35}{7-49}=\dfrac{5}{7}\end{matrix}\right.\)

\(\Rightarrow a=b=c=d=\dfrac{5}{7}\)

14 tháng 10 2021

\(a=\dfrac{35}{49};b=\dfrac{5}{7}\\ c,=\dfrac{5+35}{7+49}=\dfrac{12}{14}=\dfrac{6}{7}\\ d,=\dfrac{5-35}{7-49}\)

Áp dụng t/c dtsbn:

\(\dfrac{5}{7}=\dfrac{35}{49}=\dfrac{5+35}{7+49}=\dfrac{5-35}{7-49}\) hay \(a=b=c=d\)

 

6 tháng 11 2017

tính bình thường thôi

29 tháng 10 2017

So sánh các số sau: 

a = 3549 b = 5272 c = 52+35272+492 d = 5235272492 

=> A < B

10 tháng 12 2016

b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)

Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)

Từ biểu thức (1) và biểu thức (2)

=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

 

24 tháng 12 2023

a: \(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)

b: \(M=1-\dfrac{5}{\sqrt{196}}-\dfrac{5}{\left(2\sqrt{21}\right)^2}-\dfrac{\sqrt{25}}{204}-\dfrac{\left(\sqrt{5}\right)^2}{374}\)

\(=1-\dfrac{5}{14}-\dfrac{5}{84}-\dfrac{5}{204}-\dfrac{5}{374}\)

\(=1-5\left(\dfrac{1}{14}+\dfrac{1}{84}+\dfrac{1}{204}+\dfrac{1}{374}\right)\)

\(=1-5\left(\dfrac{1}{2\cdot7}+\dfrac{1}{7\cdot12}+\dfrac{1}{12\cdot17}+\dfrac{1}{17\cdot22}\right)\)

\(=1-\left(\dfrac{5}{2\cdot7}+\dfrac{5}{7\cdot12}+\dfrac{5}{12\cdot17}+\dfrac{5}{17\cdot22}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{22}\right)\)

\(=1-\dfrac{11-1}{22}=1-\dfrac{10}{22}=\dfrac{12}{22}=\dfrac{6}{11}\)

11 tháng 2 2018

\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\frac{2^2}{7^2}-\frac{4}{343}}\)

\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{\frac{8}{2}-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(B=\frac{\frac{343}{343}-\frac{49}{343}+\frac{7}{343}-\frac{1}{343}}{4-\frac{4}{7}+\frac{28}{343}-\frac{4}{343}}\)

\(B=\frac{\frac{300}{343}}{\frac{28}{7}-\frac{4}{7}+\frac{24}{343}}\)

\(B=\frac{\frac{300}{343}}{\frac{24}{7}+\frac{24}{343}}\)

\(B=\frac{\frac{300}{343}}{\frac{1323}{343}+\frac{24}{343}}\)

\(B=\frac{300}{343}:\frac{1347}{343}\)

\(B=\frac{100}{449}\)

11 tháng 2 2018

\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(A=\frac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^6}{5^9.7^3+5^9.2^3.7^3}\)

\(A=\frac{2^{12}.3^5\left(1-3\right)}{2^{12}.3^5.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7^3\right)}{5^9.7^3.\left(1+8\right)}\)

\(A=\frac{-2}{4}-\frac{5.\left(-342\right)}{9}\)

\(A=\frac{-1}{2}+\frac{1710}{9}\)

\(A=\frac{-1}{2}+190\)

\(A=\frac{-1}{2}+\frac{380}{2}\)

\(A=\frac{379}{2}\)

25 tháng 10 2022

a: \(=7\cdot\dfrac{6}{7}-5+\dfrac{3\sqrt{2}}{2}=1+\dfrac{3}{2}\sqrt{2}\)

b: \(=-\dfrac{8}{7}-\dfrac{3}{5}\cdot\dfrac{5}{8}+\dfrac{1}{2}=\dfrac{-16+7}{14}-\dfrac{3}{8}=\dfrac{-9}{14}-\dfrac{3}{8}\)

\(=\dfrac{-72-42}{112}=\dfrac{-114}{112}=-\dfrac{57}{56}\)

c: \(=20\sqrt{5}-\dfrac{1}{4}\cdot\dfrac{4}{3}+\dfrac{3}{2}=20\sqrt{5}+\dfrac{3}{2}-\dfrac{1}{3}=20\sqrt{5}+\dfrac{7}{6}\)

 

11 tháng 12 2017

\(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{\dfrac{8}{2}-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)

11 tháng 2 2018

\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(=\dfrac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\dfrac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.\left(2.7\right)^3}\)

\(=\dfrac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)

= \(\dfrac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\dfrac{5^{10}.7^3\left(1-7\right)}{5^9.7^3\left(1+2^3\right)}\)

= \(\dfrac{2}{3.4}-\dfrac{5\left(-6\right)}{9}\)

= \(\dfrac{7}{2}\)

\(B=\dfrac{\left(\dfrac{5}{70}-\dfrac{10\sqrt{2}}{70}+\dfrac{6\sqrt{2}}{70}\right)\cdot\dfrac{-4}{15}}{\left(\dfrac{5}{50}+\dfrac{6\sqrt{2}}{50}-\dfrac{10\sqrt{2}}{50}\right)\cdot\dfrac{5}{7}}=\dfrac{\dfrac{5-4\sqrt{2}}{70}\cdot\dfrac{-4}{15}}{\dfrac{5-4\sqrt{2}}{50}\cdot\dfrac{5}{7}}\)

\(=\dfrac{-4\left(5-4\sqrt{2}\right)}{70\cdot15}\cdot\dfrac{50\cdot7}{5\left(5-4\sqrt{2}\right)}=\dfrac{-4}{5}\cdot\dfrac{350}{70\cdot15}=\dfrac{-4}{5}\cdot\dfrac{1}{3}=\dfrac{-4}{15}\)

25 tháng 10 2022

a: \(=2\cdot\dfrac{5}{4}-3\cdot\dfrac{7}{6}+4\cdot\dfrac{9}{8}=\dfrac{5}{2}-\dfrac{7}{2}+\dfrac{9}{2}=\dfrac{7}{2}\)

b: \(=18-16\cdot\dfrac{1}{2}+\dfrac{1}{16}\cdot\dfrac{3}{4}\)

=10+3/64

=643/64

c: \(=\dfrac{2}{3}\cdot\dfrac{9}{4}-\dfrac{3}{4}\cdot\dfrac{8}{3}+\dfrac{7}{5}\cdot\dfrac{5}{14}=\dfrac{3}{2}-2+\dfrac{1}{2}=2-2=0\)