\(^2\)+1)(2\(^4\)+1)(2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1< 2^{32}=B\)

19 tháng 9 2018

\(a)\) Ta có : 

\(A=2008.2010=\left(2009+1\right)\left(2009-1\right)=2009^2-1< 2009^2=B\)

Vậy \(A< B\)

\(b)\)\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\) (bn xem lại đề xem có nhầm j ko, nếu đề đúng thì mk sr)

\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(A=2^{32}-1< 2^{32}=B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

18 tháng 7 2020

b) A = 2010 . 2012

        = ( 2011 - 1 )( 2011 + 1 )

        = 20112 - 12 = 20112 - 1

20112 - 1 < 20112 => A < B 

20 tháng 6 2021

Ta có A = 2018.2020 + 2019.2021

= (2020 - 2).2020 + 2019.(2019 + 2) 

= 20202 - 2.2020 + 20192 + 2.2019

= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B

=> A = B

b) Ta có B = 964 - 1= (932)2 - 12 

= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1) 

  (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80 

mà A =   (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10

=> A < B

20 tháng 6 2021

c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)

=> A < B

d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)

=> A < B

8 tháng 7 2018

a) Đặt \(A=\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=2.\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3^4-1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(...\)

\(2A=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(2A=3^{64}-1\)

\(A=\frac{3^{64}-1}{2}\)

23 tháng 7 2016

a) \(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=.............................................................\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=B-1\)

Suy ra A < B

b) \(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1=B-1\)

Suy ra A < B

23 tháng 7 2016

Phần a bạn nhân thêm ở A là (2-1) là ra hằng đẳng thức, cứ thế mà triển. (Kết quả: A<B)

Phần b: phân tích A, ta có:

2015.2017= (2016-1).(2016+1)= 2016^2 -1 <2016^2

Suy ra: A<B

6 tháng 10 2018

1)

a)\(A=2013.2015=2013.\left(2014+1\right)=2013.2014+2013\)

\(B=2014^2=2014.\left(2013+1\right)=2014.2013+2014\)

Ta có: \(2014.2013+2014>2013.2014+2013\)

\(\Rightarrow2014^2>2013.2015\)

\(\Rightarrow B>A\)

Vậy \(B>A\)

b) \(A=4.\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=2.4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right).\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^{16}-1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\)

\(\Rightarrow A=\frac{3^{128}-1}{2}< 3^{128}-1=B\)

\(\Rightarrow A< B\)

Vậy \(A< B\)

2)

a)\(9x^2-6x+3=\left(3x\right)^2-2.3x.1+1^2+2\)

                           \(=\left(3x-1\right)^2+2\)

Ta có: \(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-1\right)^2+2\ge2\forall x\)

\(\Rightarrow\left(3x-1\right)^2+2>0\forall x\)

                                đpcm

b)\(x^2+y^2+2x+6y+16\)

\(=\left(x^2+2x+1\right)+\left(y^2+2.y.3+3^2\right)+6\)

\(=\left(x+1\right)^2+\left(y+3\right)^2+6\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x+1\right)^2+\left(y+3\right)^2+6\ge6\forall x;y\)

\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+6>0\)

                                         đpcm

Tham khảo nhé~

6 tháng 10 2018

1.

a) A = 2013.2015 = (2014 - 1)(2014 + 1) = 20142 - 1

Vì 20142 - 1 < 20142 => A < B

Vậy A < B

b) \(A=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Leftrightarrow A=\frac{3^{128}-1}{2}\)

\(\Rightarrow A< B\)

Vậy A < B

Bài 2:

a) \(9x^2-6x+2=\left(3x\right)^2-2.3x+1+2=\left(3x-1\right)^2+2\)

Vì \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+2>0\)

=> 9x2 - 6x + 2 luôn nhận giá trị dương với mọi x

b) \(x^2+y^2+2x+6y+16=\left(x^2+2x+1\right)+\left(y^2+6y+9\right)+6=\left(x+1\right)^2+\left(y+3\right)^2+6\)

Vì \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+6>0\)

=> x2 + y2 + 2x + 6y + 16 luôn nhận giá trị dương với mọi x

10 tháng 8 2020

Ta có : \(\hept{\begin{cases}A=1999.2001\\B=2000^2\end{cases}}\)

\(< =>\hept{\begin{cases}A=1999.2000+1999\\B=2000\cdot2000\end{cases}}\)

\(< =>\hept{\begin{cases}A=1999.2000+2000+1\\B=1999.2000+2000\end{cases}}\)

\(< =>\hept{\begin{cases}A=2000.2000+1\\B=2000.2000\end{cases}}\)

\(< =>A>B\)

10 tháng 8 2020

a. Ta có : \(A=1999.2021=\left(2000-1\right)\left(2000+1\right)=2020^2-1< 2020\)

\(\Rightarrow A< B\)

b. Ta có : \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

...

\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}\)

\(\Rightarrow A>B\)

c,d tương tự

4 tháng 8 2018

Bài 1:

a) \(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1\)

b) Sửa đề \(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)

\(=\left(3^{32}-1\right)\left(3^{32}+1\right)-3^{64}\)

\(=3^{64}-1-3^{64}\)

\(=-1\)

Bài 2:

Ta có:

\(A=2009.2009\)

\(A=2009\left(2008+1\right)\)

\(A=2009.2008+2009\)

Ta lại có:

\(B=2008.2010\)

\(B=2008\left(2009+1\right)\)

\(B=2008.2009+2008\)

Vì 2008.2009 = 2009.2008

2009 > 2008

=> 2008.2009 + 2009 > 2009.2008 + 2008

=> A > B

4 tháng 8 2018

1,a,(2-1)(2+1)(22+1)(24+1)(28+1)

=(22-1)(22+1)(24+1)(28+1)

=(24-1) (24+1)(28+1)

=(28 -1)(28+1)=216-1

2,

A=2009.2009=20092

B=2008.2010=(2009-1)(2009+1)=20092-1

Do20092>20092-1\(\Rightarrow A>B\)