Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 1999 x 2001 = 1999 x (1 + 2000) = 1999 x 2000 + 1999
B = 2000 x 2000 = 2000 x (1999 + 1) = 2000 x 1999 + 2000
Vậy A < B
Sorry mk chưa đoc kĩ đề mk làm lại nhá
Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2
Ta có : A = (2000 - 1)(2000 + 1) = 20002 - 1
Mà B = 20002
Nên A < B
Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2
Ta có : A = (2012 - 1)(2012 + 1) = 20122 - 1
Mà B = 20122
Nên A < B
1) 1
2)Ta có: 2011 x 2013 + 2012 x 2014 =8100311
20122 + 20132 - 2 =8100311 .
Vậy ta đã thấy 2 số bằng nhau
Kết luận : 2011 x 2013 + 2012 x 2014 = 20122+ 20132 - 2
1, \(B=3^{24}-\left(27^4+1\right)\left(9^6-1\right)\)
\(=\left(3^{12}\right)^2-\left(3^{12}+1\right)\left(3^{13}-1\right)\)
\(=\left(3^{12}\right)^2-\left[\left(3^{12}\right)^2-1\right]\)
\(=\left(3^{12}\right)^2-\left(3^{12}\right)^2+1\)
\(=1\)
Vậy \(B=1\)
a) bài này xét chữ số tận cùng nhé
\(12^{2000}-2^{1000}=\left(2^2\right)^{1000}-\left(2^2\right)^{500}=4^{1000}-4^{500}=\left(...6\right)-\left(...6\right)=\left(...0\right)\) chia hết cho 10
=>122000-21000 chia hết cho 10 (đpcm)
b) chưa nghĩ ra :(
a) \(A=1999\cdot2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1\)
=> \(A< B\)
b) \(A=12^6\)
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)
=> \(A>B\)
c) \(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1\)
\(B=2012^2\)
=> \(A< B\)
d) \(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)
\(=\frac{\left(3^4-1\right)\left(3^4+1\right)..\left(3^{64}+1\right)}{2}\)
\(=\frac{\left(3^8-1\right).....\left(3^{64}+1\right)}{2}\)
\(=\frac{3^{128}-1}{2}\)
\(B=3^{128}-1\)
=> \(A< B\)
\(A=4\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^{128}-1\right)< B\)
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1=B\)
\(\Rightarrow A< B\)
Ta có:
B=2012^2.
=>B=2012*2012.
=>B=2012*2011+2012.
=>B=2011*2012+2011+1.
=>B=2011*(2012+1)+1.
=>B=2011*2013+1.
Mà A=2011*2013.
Vậy A<B.
Ta có:
\(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)\)
\(=2012^2-1< 2012^2=B\)
VẬY A<B