\(A=\frac{2015}{2016}+\frac{2016}{2017}\) và \(B=\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2016

dễ thấy B=\(\frac{2015+2016}{2016+2017}\)<1

A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)=1-\(\frac{1}{2016}\)+1-\(\frac{1}{2017}\)=(1+1)-(\(\frac{1}{2016}\)+\(\frac{1}{2017}\))=2-(\(\frac{1}{2016}\)+\(\frac{1}{2017}\))

vì (\(\frac{1}{2016}\)+\(\frac{1}{2017}\))<0,5+0,5=1 suy ra 2-(\(\frac{1}{2016}\)+\(\frac{1}{2017}\))>1 mà b<1suy ra A>B

 

Ta thấy: B=\(\frac{2015+2016}{2016+2017}\)=\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)

              A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)

\(\frac{2015}{2016+2017}\)<\(\frac{2015}{2016}\)\(\frac{2016}{2016+2017}\)<\(\frac{2016}{2017}\)

Suy ra: \(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)>\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)=\(\frac{2015+2016}{2016+2017}\)

               Hay A>B

14 tháng 4 2016

2016

7 tháng 4 2016

Ta có :

\(S=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+..+2016}\)

    \(=2015.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+2016}\right)\)

    \(=2015.\left(1+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2016+1\right).2016}{2}}\right)\)

    \(=2015.\left(\frac{2}{2}+\frac{2}{2.\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{2016.\left(2016+1\right)}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2.\left(2+1\right)}+\frac{1}{3.\left(3+1\right)}+...+\frac{1}{2016.\left(2016+1\right)}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\) 

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2017}\right)\)

    \(=2015.2.\left(1-\frac{1}{2017}\right)\)

    \(=2015.2.\frac{2016}{2017}\)

    =\(\frac{2015.2.2016}{2017}\)

    =\(\frac{8124480}{2017}\)

Vậy \(S=\frac{8124480}{2017}\)

 

    

7 tháng 4 2016

yeu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30 tháng 3 2016

Mình chọn nhỏ hơnhaha

30 tháng 3 2016

lm tốt nhưng mink k tích vì k có cách trình bày

 

\(A=\dfrac{3\cdot10^{2016}+12-10^{2017}-5}{63}\)

\(A=\dfrac{10^{2016}\cdot\left(-7\right)+7}{63}=\dfrac{\left(-7\right)\cdot\left(10^{2016}-1\right)}{63}\)

\(=\dfrac{\left(10-1\right)\cdot B}{-9}=-B\) là số tự nhiên

24 tháng 4 2016

Ta có:

Đặt  \(A=1+2+2^2+2^3+...+2^{2015}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2016}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)

\(\Rightarrow A=2^{2016}-1=-\left(1-2^{2016}\right)\) (Đặt dấu trừ ra trước thì đổi dấu)

Ta có: \(S=\frac{A}{1-2^{2016}}=\frac{-\left(1-2^{2016}\right)}{1-2^{2016}}=-1\)

Vậy S= -1

Có đc 1 GP ko nhỉ  lolang