Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b thuộc Z,a<0 và b>0
So sánh 2 số hữu tỉ a/b và a+2012/b+2012 ta được a/b ........a+2012/b+2012
\(\frac{a}{b}=\frac{a\left(b+2012\right)}{b\left(b+2012\right)}=\frac{ab+2012a}{b\left(b+2012\right)}\)
\(\frac{a+2012}{b+2012}=\frac{\left(a+2012\right)b}{b\left(b+2012\right)}=\frac{ab+2012b}{b\left(b+2012\right)}\)
Vì b > 0 nên b(b + 2012) > 0
a < 0 ; b > 0 nên a < b => 2012a < 2012b => ab + 2012a < ab + 2012b => \(\frac{ab+2012a}{b\left(b+2012\right)}<\frac{ab+2012b}{b\left(b+2012\right)}\)
=> \(\frac{a}{b}<\frac{a+2012}{b+2012}\)
để so sánh a/b và a+2012/b+2012
Ta xét tích:a(b+2012) và b(a+2012)
Vì b>0 =>b+2012>0
*a>b <=>2012a>2012b
<=>a(b+2012)>b(a+2012)
<=>a/b>a+2012/b+2012
*a=b<=>2012a=2012b
<=>a(b+2012)=b(a+2012)
<=>a/b=a+2012/b+2012
*a<b<=>2012a<2012b
<=>a(b+2012)<b(a+20120
<=>a/b<a+2012/b+2012
KL: a>b <=>a/b>a+2012/b+2012
....(tương tự như trên)
Theo bài ra ta có :
\(A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{4.5}+...+\frac{2011}{1999.2000}\)
\(\Rightarrow\frac{A}{2011}=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{1999.2000}\)
\(\Rightarrow\frac{A}{2011}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1999}-\frac{1}{2000}\)
\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{1999}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2000}\right)\)
\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\) \(-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\)
\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\)
\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{1000}\right)\)
\(\Rightarrow\frac{A}{2011}=\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\)
\(\Rightarrow A=2011\left(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\right)\left(1\right)\)
Ta lại có :
\(B=\frac{2012}{1001}+\frac{2012}{1002}+...+\frac{2012}{2000}\)
\(\Rightarrow B=2012\left(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\right)\)\(\left(2\right)\)
Từ (1) và (2) => A < B
Vậy A < B
Ta có:\(\frac{a}{b}=\frac{a.\left(b+2012\right)}{b.\left(b+2012\right)}=\frac{ab+a.2012}{b.\left(b+2012\right)}\)
\(\frac{a+2012}{b+2012}=\frac{b.\left(a+2012\right)}{b.\left(b+2012\right)}=\frac{ab+b.2012}{b.\left(b+2012\right)}\)
Vì a<0<b=>a<b=>a.2012<b.2012
=>\(\frac{ab+a.2012}{b.\left(b+2012\right)}<\frac{ab+b.2012}{b.\left(b+2012\right)}\)
=>\(\frac{a}{b}<\frac{a+2012}{b+2012}\)