Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) có:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right)\left(\dfrac{9}{2\left(a+b+c\right)}\right)-3\)
\(=\dfrac{9}{2}-3=1,5\)
Dấu " = " khi a = b = c
Bài 5:
Áp dụng bất đẳng thức AM - GM có:
\(a^2+b^2+c^2+d^2\ge2ab+2cd\ge4\sqrt{abcd}\)
Dấu " = " khi a = b = c = d = 1
7) VP phải là abc nha
\(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)
\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)
Nhân từng vế của 3 BĐT trên
\(\left[VT\right]^2\le VP^2\)
Các biểu thức trong ngoặc vuông đều dương nên khai phương ta được đpcm
Đẳng thức xảy ra khi và chỉ khi a=b=c
d. x+165+x+363=x+561+x+759
\(\Leftrightarrow2x+528=2x+1320\)
\(\Leftrightarrow2x-2x=1320-528\)
\(\Leftrightarrow0x=729\) (loại)
\(\Rightarrow\) PT vô N0
Có \(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
<=> \(a+b+c\ge3.\frac{bc+ac+ab}{abc}=\frac{bc+ac+ab}{a+b+c}\)( vì abc=a+b+c)
<=> \(\left(a+b+c\right)^2\ge3\left(bc+ac+ab\right)\)
<=> \(a^2+b^2+c^2+2bc+2ac+2ab-3bc-3ac-3ab\ge0\)
<=> \(a^2+b^2+c^2-ab-ac-bc\ge0\)
<=> 2a2+2b2+2c2-2ab-2ac-2bc \(\ge0\)
<=> (a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2) \(\ge0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.< =>a=b=c\)
Vậy \(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
1) Có \(2x=-3y=4z\)
=> \(y=\frac{2x}{-3}\) ,\(z=\frac{2x}{4}=\frac{x}{2}\)
Có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
<=> \(\frac{1}{x}+\frac{1}{\frac{2x}{-3}}+\frac{1}{\frac{x}{2}}=3\)
<=>\(\frac{1}{x}-\frac{3}{2x}+\frac{2}{x}=3\) <=> \(\frac{2-3+4}{2x}=3\) <=> 3=6x
<=> x=\(\frac{1}{2}\)
=> y=\(\frac{\frac{1}{2}.2}{-3}=-\frac{1}{3}\) , \(z=\frac{2}{\frac{1}{2}}=4\)
Vậy (x,y,z)\(\in\left\{\frac{1}{2},-\frac{1}{3},4\right\}\)
a, Khi m=2, hệ pt có dạng
\(\left\{{}\begin{matrix}x+2y=2\\2x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\2x-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2\times1-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy hệ pt có nghiệm (1;1/2)
b, \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\\left(-m^2-2\right)y+2m-1=0\left(\cdot\right)\end{matrix}\right.\)
Hệ pt có nghiệm duy nhất khi pt (.) có nghiệm duy nhất
\(\Leftrightarrow-m^2-2\ne0\Leftrightarrow-m^2\ne2\Leftrightarrow m^2\ne-2\)(luôn đúng)
\(\forall m\) ( 1 ) , hê pt có dạng
\(\left\{{}\begin{matrix}x=2-my\\\left(-m^2-2\right)y=1-2m\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{1-2m}{-m^2-2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\left(1-2m\right)}{-m^2-2}\\y=\dfrac{1-2m}{-m^2-2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-2m^2-4-m+2m^2}{-m^2-2}\\y=\dfrac{1-2m}{-m^2-2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Để x>0 thì \(\dfrac{m+4}{m^2+2}>0\) mà m2+2 > 0 ( luôn đúng) \(\Rightarrow m+4>0\Leftrightarrow m>-4\left(2\right)\)
Để y<0 thì \(\dfrac{2m-1}{m^2+2}< 0\) mà m2+2 > 0 ( luôn đúng )
\(\Rightarrow2m-1< 0\Leftrightarrow m< \dfrac{1}{2}\left(3\right)\)
Từ (1),(2),(3) \(\Rightarrow\forall m\) thỏa mãn \(-4< m< \dfrac{1}{2}\) thì hệ pt đã cho có nghiệm duy nhất (x;y) sao cho x>0 , y< 0