Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\hept{\begin{cases}x+y=2\\2x+my=5\end{cases}}\)
a, Với \(m=3\) ta có:
\(\hept{\begin{cases}x+y=2\\2x+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2-y\\2\left(2-y\right)+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
b, \(\hept{\begin{cases}x+y=2\\2x+my=5\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+2y=4\left(1\right)\\2x+my=5\left(2\right)\end{cases}}\)
Ta lấy \(\left(1\right)-\left(2\right)\) ta được: \(y\left(2-m\right)=-1\)
Với \(m\ne2\) hpt có nghiệm duy nhất là: \(\hept{\begin{cases}y=-\frac{1}{2-m}\\x=2-\frac{-1}{2-m}=\frac{5-2m}{2-m}\end{cases}}\)
Ta có: \(\hept{\begin{cases}y>0\\x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\frac{1}{2-m}>0\\\frac{5-2m}{2-m}< 0\end{cases}}\) \(\Leftrightarrow2-m< 0\) hoặc \(\orbr{\begin{cases}5-2m>0.hoac.2-m< 0\\5-2m< 0.hoac.2-m>0\end{cases}}\)
\(\Leftrightarrow m>2\) hoặc \(\orbr{\begin{cases}2< m< \frac{5}{2}\\m< 2,m>\frac{5}{2}\end{cases}}\Leftrightarrow2< m< \frac{5}{2}\)
Vậy .............
Bạn Băng !
<=> \(2-m< 0\) và \(\orbr{\begin{cases}...\\...\end{cases}}\)
( không phải là " hoặc " )
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2: Để hpt có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{3}{-2}\Leftrightarrow\)\(m\ne\dfrac{-3}{2}\)
Bài 1: \(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2x-y=-2\left(2\right)\end{matrix}\right.\)
Lấy (1) cộng (2), ta được: \(\left(m+2\right)x=3\Rightarrow x=\dfrac{3}{m+2}\)
Thay vào (2): \(\dfrac{6}{m+2}-y=-2\)\(\Rightarrow y=\dfrac{6+2m+4}{m+2}=\dfrac{2m+10}{m+2}\)
x0+y0=1\(\Rightarrow\dfrac{3}{m+2}+\dfrac{2m+10}{m+2}=\dfrac{2m+13}{m+2}=1\)(ĐK: \(m\ne-2\))
\(\Rightarrow2m+13=m+2\Leftrightarrow m=-11\left(TM\right)\)
Bài 3: Thay \(x=\sqrt{2};y=4-\sqrt{2}\) vào đths y=ax+b:
\(\sqrt{2}a+b=4-\sqrt{2}\left(1\right)\)
Thay x=2; \(y=\sqrt{2}\) vào đths y=ax+b:
\(2a+b=\sqrt{2}\left(2\right)\)
Từ (1) và (2), ta có hpt: \(\left\{{}\begin{matrix}\sqrt{2}a+b=4-\sqrt{2}\\2a+b=\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=\sqrt{2}+4\end{matrix}\right.\)
Vậy đths \(y=-2x+4+\sqrt{2}\) đi qua điểm \(\left(\sqrt{2};4-\sqrt{2}\right)\) và \(\left(2;\sqrt{2}\right).\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, - Thay m = 1 vào hệ phương trình ta được :
\(\left\{{}\begin{matrix}x+y=2\\x+y=1+1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=2\\x+y=2\end{matrix}\right.\)
Vậy với m = 1 hệ phương trình có vô số nghiệm .
b, - Để hệ phương trình có nghiệm duy nhất thì :\(\frac{1}{m}\ne\frac{m}{1}\)
=> \(m^2\ne1\)
=> \(m\ne\pm1\) ( đpcm )
Vậy với \(m\ne\pm1\) hệ phương trình luôn có nghiệm duy nhất .
c, Ta có hệ phương trình : \(\left\{{}\begin{matrix}x+my=2\left(I\right)\\mx+y=m+1\left(II\right)\end{matrix}\right.\)
- Từ ( I ) ta có phương trình : \(x+my=2\)
=> \(x=2-my\left(III\right)\)
- Thay \(x=2-my\) vào phương trình ( II ) ta được :
\(m\left(2-my\right)+y=m+1\)
=> \(2m-m^2y+y=m+1\)
=> \(y\left(1-m^2\right)=m+1-2m\)
=> \(y=\frac{1-m}{1-m^2}=\frac{1-m}{\left(1-m\right)\left(1+m\right)}=\frac{1}{m+1}\)
- Thay \(y=\frac{1}{m+1}\) vào phương trình ( III ) ta được :
\(x=2-\frac{m}{m+1}\)
=> \(x=\frac{2\left(m+1\right)-m}{m+1}=\frac{2m+2-m}{m+1}=\frac{m+2}{m+1}\)
- Ta có : \(x+y=0\) ( IV )
- Thay \(x=\frac{m+2}{m+1},y=\frac{1}{m+1}\) vào phương trình ( IV ) ta được :
\(\frac{m+2}{m+1}+\frac{1}{m+1}=0\left(m\ne1\right)\)
=>\(m+3=0\)
=> \(m=-3\)
Vậy để nghiệm của hệ phương trình thỏa mãn x + y = 0 thì m có giá trị là -3 .
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
a, Khi m=2, hệ pt có dạng
\(\left\{{}\begin{matrix}x+2y=2\\2x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\2x-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2\times1-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy hệ pt có nghiệm (1;1/2)
b, \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\\left(-m^2-2\right)y+2m-1=0\left(\cdot\right)\end{matrix}\right.\)
Hệ pt có nghiệm duy nhất khi pt (.) có nghiệm duy nhất
\(\Leftrightarrow-m^2-2\ne0\Leftrightarrow-m^2\ne2\Leftrightarrow m^2\ne-2\)(luôn đúng)
\(\forall m\) ( 1 ) , hê pt có dạng
\(\left\{{}\begin{matrix}x=2-my\\\left(-m^2-2\right)y=1-2m\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{1-2m}{-m^2-2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\left(1-2m\right)}{-m^2-2}\\y=\dfrac{1-2m}{-m^2-2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-2m^2-4-m+2m^2}{-m^2-2}\\y=\dfrac{1-2m}{-m^2-2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Để x>0 thì \(\dfrac{m+4}{m^2+2}>0\) mà m2+2 > 0 ( luôn đúng) \(\Rightarrow m+4>0\Leftrightarrow m>-4\left(2\right)\)
Để y<0 thì \(\dfrac{2m-1}{m^2+2}< 0\) mà m2+2 > 0 ( luôn đúng )
\(\Rightarrow2m-1< 0\Leftrightarrow m< \dfrac{1}{2}\left(3\right)\)
Từ (1),(2),(3) \(\Rightarrow\forall m\) thỏa mãn \(-4< m< \dfrac{1}{2}\) thì hệ pt đã cho có nghiệm duy nhất (x;y) sao cho x>0 , y< 0