Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5^{2016}+1}{5^{2017}+1}\)
\(\Rightarrow5A=\frac{5^{2017}+5}{5^{2017}+1}=1+\frac{4}{5^{2017}+1}\)
\(B=\frac{5^{2017}+1}{5^{2018}+1}\)
\(\Rightarrow5B=\frac{5^{2018}+5}{5^{2018}+1}=1+\frac{4}{5^{2018}+1}\)
Do \(\frac{4}{5^{2018}+1}< \frac{4}{5^{2017}+1}\)
\(\Rightarrow5A>5B\Leftrightarrow A>B\)
Nhân chéo là được bạn ạ
TA so sánh: (15^5+2017).(19^5-2) với (19^5+2016).(19^5-1)
Dễ dàng thấy (15^5+2017).(19^5-2) < (19^5+2016).(19^5-1) (Mỗi thừa số của tích này đều lớn hơn mỗi thừa số của tích kia)
Suy ra A<B.
1: so sánh 2016/2017+2017/2018
vì 2016/2017 > 1/2017 >1/2018 =
> 2016/2017+2017/2018 >1/2018+2017/2018=1
vậy .....
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)
\(=\frac{3}{5}+\frac{2}{5}=1\)
b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)
\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{1}{3.2}-\frac{5.2}{7.3}\)
\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)
\(=\frac{7}{42}-\frac{20}{42}\)
\(=-\frac{13}{42}\)
\(A=\frac{1}{5}+\frac{1}{5^2}+...............+\frac{1}{5^{2016}}+\frac{1}{5^{2017}}\)
\(\Rightarrow5A=1+\frac{1}{5}+...................+\frac{1}{5^{2015}}+\frac{1}{5^{2016}}\)
\(\Rightarrow5A-A=\left(1+\frac{1}{5}+...........+\frac{1}{5^{2015}}+\frac{1}{5^{2016}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+.............+\frac{1}{5^{2016}}+\frac{1}{5^{2017}}\right)\)
\(\Rightarrow4A=1-\frac{1}{5^{2017}}\)
\(\Rightarrow A=\left(1-\frac{1}{5^{2017}}\right):4=\left(1-\frac{1}{5^{2017}}\right).\frac{1}{4}=\frac{1}{4}-\frac{1}{5^{2017}.4}< \frac{1}{4}\)
\(\Rightarrow A< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
Chúc bạn học tốt
\(A=\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{2016}}+\frac{1}{5^{2017}}\)
=>5A = \(1+\frac{1}{5}+...+\frac{1}{5^{2015}}+\frac{1}{5^{2016}}\)
=> 5A -A = \(\left(1+\frac{1}{5}+...+\frac{1}{5^{2015}}+\frac{1}{5^{2016}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2016}}+\frac{1}{5^{2017}}\right)\)
=> 4A = \(1-\frac{1}{5^{2017}}\)
=> \(A=\frac{1-\frac{1}{5^{2017}}}{4}=\frac{1}{4}-\frac{1}{5^{2017}}< \frac{1}{4}\)