Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1030 và 2100 .
1030 = ( 103 )10 = 100010 .
2100 = ( 210 )10 = 102410 .
Vì 100010 < 102410 .
\(\Rightarrow\) 1030 < 2100 .
Vậy ....
b) \(\uparrow\) Lm như trên .
THAM KHẢO! 555222 + 222555 =222555 + 555555 - (555555 - 555222)
= 222555 + 555555 - 555222(555333 - 1)
Ta có :
222555 + 555555 chia hết cho 222 + 555 = 777 chia hết cho 7 (1)
555333 - 1 = (5553)111 - 1 ⋮⋮ 5553 - 1
Ta có 555 = 7 . 79 + 2 = 7k + 2 (với k = 79)
5553 - 1 = (7k+2)³ - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 8 - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 7 ⋮⋮ 7
=> 555333 - 1 chia hết cho 7 (2)
Từ (1) và (2) => 555222 + 222555 chia hết cho 7 (đpcm)
\(9^{1575}=\left(3^2\right)^{1575}=3^{3150}\)
UCLN(3150,2100) = 1050. Đưa các lũy thừa cần so sánh về cùng số mũ 1050 như sau:
\(3^{3150}=\left(3^3\right)^{1050}=27^{1050}\)
\(5^{2100}=\left(5^2\right)^{1050}=25^{1050}\)
Do \(27^{1050}>25^{1050}\) Suy ra \(9^{1575}>5^{2100}\)
So sánh A=\(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{2021}\)và B=20. So sánh A và B
Câu B:
Xét hai tam giác vuông ABD và HBD, ta có:
∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC).
Cạnh huyền BD chung
∠BAD = ∠BHD = 90º
Suy ra: ΔABD = ΔHBD (cạnh huyền, góc nhọn)
⇒ AD = HD (2 cạnh tương ứng) (1)
Trong tam giác vuông DHC có ∠DHC = 90o
⇒ DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) (2)
Từ (1) và (2) suy ra: AD < DC
a: ΔHBA vuông tại B
=>HB<HA
Vì AB<BC
nên HA<HC
=>HB<HA<HC
b: HA<HC
=>góc HCA<góc HAC
c: HA<HC
=>góc HCA<góc HAC
=>góc AHB>góc BHC
a, trường hợp 1 :
a<b ta có :
ab+an<ab+bn
a.(b+n) < b(a+n)
a/b<a+n/b+
th2 bạn làm tương tử nhé thay dấu lớn thui phần b y hệt a nhé 100% đấy hum nay mình vừa học xong
\(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)
a, Ta có:
1030 = (103)10 = 100010
2100 = (210)10 = 102410
Vì 1000 < 1024
=> 100010 < 102410
hay 1030 < 2100
b, Ta có:
222555 = (2225)111 = (1115.25)111
= (1115 . 32)111
Lại có:
555222 = (5552)111 = (1112 . 52)111
= (1112 . 25)111
Ta có:
1112 < 1115
=> 1112.25 < 1115 . 32
=>(1112 . 25)111 < (1112 . 25)111
hay 555222 < 222555