K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

(a + 1)(a + 2)(a + 3) - a(a + 1)(a + 2) = (a + 1)(a + 2)[(a + 3) - a] = 3(a + 1)(a + 2)

21 tháng 6 2016

Ta có: (a+1).(a+2).(a+3) - a.(a+1).(a+2)=(a+1).(a+2).(a+3-a)=(a+1).(a+2).3

=>(a+1).(a+2).(a+3) - a.(a+1).(a+2) = 3.(a+1).(a+2)

25 tháng 1

Câu 1: So sánh Biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) 3(a+1)(a+2) Bước 1: Rút gọn biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Ta có thể khai triển từng phần: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) = ( 𝑎 + 1 ) ( 𝑎 2 + 5 𝑎 + 6 ) = 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 (a+1)(a+2)(a+3)=(a+1)(a 2 +5a+6)=a 3 +6a 2 +11a+6 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 𝑎 ( 𝑎 2 + 3 𝑎 + 2 ) = 𝑎 3 + 3 𝑎 2 + 2 𝑎 a(a+1)(a+2)=a(a 2 +3a+2)=a 3 +3a 2 +2a Vậy biểu thức 1 trở thành: ( 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 ) − ( 𝑎 3 + 3 𝑎 2 + 2 𝑎 ) = 3 𝑎 2 + 9 𝑎 + 6 (a 3 +6a 2 +11a+6)−(a 3 +3a 2 +2a)=3a 2 +9a+6 Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 3 ( 𝑎 2 + 3 𝑎 + 2 ) = 3 𝑎 2 + 9 𝑎 + 6 3(a+1)(a+2)=3(a 2 +3a+2)=3a 2 +9a+6 Như vậy, biểu thức 1 và biểu thức 2 đều có giá trị bằng nhau. Do đó, cả hai biểu thức bằng nhau. Câu 2: Tính M Biểu thức: 𝑀 = 1 × 2 + 2 × 3 + 3 × 4 + ⋯ + 2002 × 2003 M=1×2+2×3+3×4+⋯+2002×2003 Bước 1: Viết lại tổng: 𝑀 = ∑ 𝑘 = 1 2002 𝑘 ( 𝑘 + 1 ) M= k=1 ∑ 2002 ​ k(k+1) Bước 2: Rút gọn 𝑘 ( 𝑘 + 1 ) k(k+1): 𝑘 ( 𝑘 + 1 ) = 𝑘 2 + 𝑘 k(k+1)=k 2 +k Do đó: 𝑀 = ∑ 𝑘 = 1 2002 ( 𝑘 2 + 𝑘 ) = ∑ 𝑘 = 1 2002 𝑘 2 + ∑ 𝑘 = 1 2002 𝑘 M= k=1 ∑ 2002 ​ (k 2 +k)= k=1 ∑ 2002 ​ k 2 + k=1 ∑ 2002 ​ k Bước 3: Tính từng tổng: Tổng ∑ 𝑘 = 1 2002 𝑘 2 ∑ k=1 2002 ​ k 2 là tổng bình phương của các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 2 = 𝑛 ( 𝑛 + 1 ) ( 2 𝑛 + 1 ) 6 k=1 ∑ n ​ k 2 = 6 n(n+1)(2n+1) ​ Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 2 = 2002 ( 2002 + 1 ) ( 2 × 2002 + 1 ) 6 = 2002 × 2003 × 4005 6 k=1 ∑ 2002 ​ k 2 = 6 2002(2002+1)(2×2002+1) ​ = 6 2002×2003×4005 ​ Tổng ∑ 𝑘 = 1 2002 𝑘 ∑ k=1 2002 ​ k là tổng các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 = 𝑛 ( 𝑛 + 1 ) 2 k=1 ∑ n ​ k= 2 n(n+1) ​ Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 = 2002 ( 2002 + 1 ) 2 = 2002 × 2003 2 k=1 ∑ 2002 ​ k= 2 2002(2002+1) ​ = 2 2002×2003 ​ Bước 4: Tính tổng 𝑀 M: 𝑀 = 2002 × 2003 × 4005 6 + 2002 × 2003 2 M= 6 2002×2003×4005 ​ + 2 2002×2003 ​ Rút gọn biểu thức: 𝑀 = 2002 × 2003 ( 4005 6 + 1 2 ) M=2002×2003( 6 4005 ​ + 2 1 ​ ) Tính phần trong dấu ngoặc: 4005 6 + 1 2 = 4005 + 3 6 = 4008 6 = 668 6 4005 ​ + 2 1 ​ = 6 4005+3 ​ = 6 4008 ​ =668 Vậy: 𝑀 = 2002 × 2003 × 668 M=2002×2003×668 Đây là kết quả của phép tính 𝑀 M.

21 tháng 6 2016

(a + 1).(a + 2).(a + 3) - a.(a + 1).(a+2) = (Lấy (a+1).(a+2) làm nhân tử chung)

= (a + 1).(a + 2).(a + 3 - a)

=3.(a + 1)(a + 2)

Vậy 2 biểu thức bằng nhau nha!

Tôi là người tự kỷ ơi, vào đây tập chép bài đi!

28 tháng 6 2016

thank you ha

25 tháng 8 2020

Bài làm:

Ta có: \(\left(a+1\right)\left(a+2\right)\left(a+3\right)-a\left(a+1\right)\left(a+2\right)\)

\(=\left(a+1\right)\left(a+2\right)\left(a+3-a\right)\)

\(=3\left(a+1\right)\left(a+2\right)\)

25 tháng 8 2020

( a + 1 )( a + 2 )( a + 3 ) - a( a + 1 )( a + 2 )

= ( a + 1 )( a + 2 )( a + 3 - a )

= ( a + 1 )( a + 2 ).3

=> ( a + 1 )( a + 2 )( a + 3 ) - a( a + 1 )( a + 2 ) = 3( a + 1 )( a + 2 )

12 tháng 7 2018

Có \(\frac{a+1}{a+2}=\frac{a+2-1}{a+2}=1-\frac{1}{a+2}\)

\(\frac{a+2}{a+3}=\frac{a+3-1}{a+3}=1-\frac{1}{a+3}\)

\(\Rightarrow\frac{a+1}{a+2}>\frac{a+2}{a+3}\)

25 tháng 4 2016

A=1+1/3+1/3^2+...+1/3^2014

3A=3.(1+1/3+1/3^2+...+1/3^2014)

3A=3+1+1/3+....+1/3^2013

Lấy 3A-A ra 2A=3-1/3^2014(nhớ quy tắc phá ngoặc và chuyển dấu nhé)

A=(3-1/3^2014):2=3/2-1/3^2014.2

suy ra A<3/2

Vậy A<3/2

Bài làm của mình có thể có nhiều sai sót mong các bạn sẽ giúp đỡ mình để lần sau bài làm của mình sẽ hoàn thiện hơn