Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không chắc đã đúng đâu nhưng mình cứ giair thử nhé !
Ta có :
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ ... + \(\frac{1}{99}-\frac{1}{100}\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)+ \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)x 2
= \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)- \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
= \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)= B
Vậy , A = B
~ Chúc bạn học giỏi ! ~
\(Giải\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}\)\(+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2014}\)
\(A=0+0+0+...+0+0\)
\(\Rightarrow A=0\)
\(a.\)\(A< 1\)
b. \(A< \frac{3}{4}\)
a) \(\frac{5}{6}\)= \(\frac{15}{18}\); b) \(\frac{99}{100}\)< \(\frac{100}{99}\); c ) \(\frac{15}{17}\)> \(\frac{13}{18}\)vì \(\frac{15}{17}\)> \(\frac{15}{18}\)> \(\frac{13}{18}\);
d) \(\frac{222}{333}\)= \(\frac{2}{3}\)\(=1-\frac{1}{3}\); \(\frac{3333}{4444}\)= \(\frac{3}{4}\)= \(1-\frac{1}{4}\); vì \(\frac{1}{3}\)> \(\frac{1}{4}\)nên \(\frac{222}{333}\)< \(\frac{3333}{4444}\)
e) \(\frac{292929}{272727}\)= \(\frac{29}{27}\)= \(1+\frac{2}{17}\); \(\frac{347347}{345345}\)= \(\frac{347}{345}\)= \(1+\frac{2}{345}\)nên \(\frac{292929}{272727}\)> \(\frac{347347}{345345}\)
ví dụ
a là 1
b là 2
ta có
1/1 - 1/2 và 1/1x2
= 1/2 và 1/2
khi đó ta thấy 1/2 = 1/2
và 1/1 - 1/2 = 1/1x2
\(A=\frac{98}{99}=1-\frac{1}{99}< 1\)
\(B=\frac{98.99+1}{99.98}=\frac{98.99}{99.98}+\frac{1}{99.98}=1+\frac{1}{99.98}>1\)
Vậy \(A< B\)
p/s: chúc bạn học tốt
Ta có : \(\frac{98.99+1}{99.98}>\frac{98.99}{99.98}=1\)
\(\frac{98}{99}< 1\)
\(=>\frac{98.99+1}{99.98}>\frac{98}{99}\)
Ta có:
\(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
...
\(\frac{1}{99}>\frac{1}{100}\)
\(\frac{1}{100}=\frac{1}{100}\)
=> S = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)
Mà số số hạng của S là: (100 - 51) : 1 + 1 = 50 (số)
=> S \(>\frac{1}{100}.50\)
=> S \(>\frac{1}{2}\)
Vậy S > 1/2.
a, \(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{2011\cdot2011}\)
có :
\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{2011\cdot2011}< \frac{1}{2010\cdot2011}\)
nên :
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow A< 1-\frac{1}{2011}\)
\(\Rightarrow A< \frac{2010}{2011}< 1\)
b, \(A=\frac{2010}{2011}=1-\frac{1}{2011}\)
\(\frac{3}{4}=1-\frac{1}{4}\)
\(\frac{1}{4}>\frac{1}{2011}\)
nên :
\(A>\frac{3}{4}\)