\(A=\frac{2013.2015+100}{2014.2014+99}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình không chắc đã đúng đâu nhưng mình cứ giair thử nhé ! 

Ta có : 

A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ ... + \(\frac{1}{99}-\frac{1}{100}\)

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)

\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)x 2 

\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)= B 

Vậy , A = B 

~ Chúc bạn học giỏi ! ~

17 tháng 5 2021

                                                                     \(Giải\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}\)\(+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2014}\)

      \(A=0+0+0+...+0+0\)

      \(\Rightarrow A=0\)   

\(a.\)\(A< 1\)

b.   \(A< \frac{3}{4}\)

25 tháng 9 2021

help me!!!

a) \(\frac{5}{6}\)\(\frac{15}{18}\); b)  \(\frac{99}{100}\)\(\frac{100}{99}\);   c ) \(\frac{15}{17}\)\(\frac{13}{18}\)vì \(\frac{15}{17}\)\(\frac{15}{18}\)\(\frac{13}{18}\)

d) \(\frac{222}{333}\)\(\frac{2}{3}\)\(=1-\frac{1}{3}\)\(\frac{3333}{4444}\)\(\frac{3}{4}\)\(1-\frac{1}{4}\); vì \(\frac{1}{3}\)\(\frac{1}{4}\)nên \(\frac{222}{333}\)\(\frac{3333}{4444}\)

e) \(\frac{292929}{272727}\)\(\frac{29}{27}\)\(1+\frac{2}{17}\)\(\frac{347347}{345345}\)\(\frac{347}{345}\)\(1+\frac{2}{345}\)nên \(\frac{292929}{272727}\)\(\frac{347347}{345345}\)

ví dụ 

a là 1 

b là 2

ta có 

 1/1 - 1/2 và 1/1x2

= 1/2 và 1/2 

khi đó ta thấy 1/2 = 1/2 

và  1/1 - 1/2 = 1/1x2

11 tháng 8 2021

giúp mik với ạ

24 tháng 7 2018

\(A=\frac{98}{99}=1-\frac{1}{99}< 1\)

\(B=\frac{98.99+1}{99.98}=\frac{98.99}{99.98}+\frac{1}{99.98}=1+\frac{1}{99.98}>1\)

Vậy  \(A< B\)

p/s: chúc bạn học tốt

Ta có : \(\frac{98.99+1}{99.98}>\frac{98.99}{99.98}=1\)

\(\frac{98}{99}< 1\)

\(=>\frac{98.99+1}{99.98}>\frac{98}{99}\)

5 tháng 3 2016

Ta có:

\(\frac{1}{51}>\frac{1}{100}\)

\(\frac{1}{52}>\frac{1}{100}\)

...

\(\frac{1}{99}>\frac{1}{100}\)

\(\frac{1}{100}=\frac{1}{100}\)

=> S = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)

Mà số số hạng của S là: (100 - 51) : 1 + 1 = 50 (số)

=> S \(>\frac{1}{100}.50\)

=> S \(>\frac{1}{2}\)

Vậy S > 1/2.

18 tháng 10 2018

a, \(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{2011\cdot2011}\)

có :

\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{2011\cdot2011}< \frac{1}{2010\cdot2011}\)

nên :

\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(\Rightarrow A< 1-\frac{1}{2011}\)

\(\Rightarrow A< \frac{2010}{2011}< 1\)

b, \(A=\frac{2010}{2011}=1-\frac{1}{2011}\) 

\(\frac{3}{4}=1-\frac{1}{4}\)

\(\frac{1}{4}>\frac{1}{2011}\)

nên :

\(A>\frac{3}{4}\)

19 tháng 3 2020

a, A bé hơn 1

b, A bé hơn 3/4