Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÁCH 1
Ta có \(A=\frac{89}{99}=\frac{99-1}{99}=\frac{99}{99}-\frac{1}{99}=1-\frac{1}{99}\)
\(B=\frac{98.99+1}{98.99}=\frac{98.99}{98.99}+\frac{1}{98.99}\)
Vì \(\frac{1}{98.99}< \frac{1}{99}\Rightarrow1+\frac{1}{98.99}>1-\frac{1}{99}\Rightarrow\frac{98.99+1}{98.99}>\frac{98}{99}\Rightarrow B>A\)
CÁCH 2
Ta thấy 98 < 99 nên \(\frac{98}{99}< 1\)hay \(A< 1\)
Ta thấy \(98.99+1>98.99\Rightarrow\frac{98.99}{98.99+1}>1\Rightarrow B>1\)
Vì A < 1 ; B > 1 nên A < B
\(A=\frac{98}{99}< 1;\Rightarrow A< 1\)
\(B=\frac{98.99+1}{98.99}\)
Ta loại các số chia hết cho nhau thì được
\(B=\frac{1.1+1}{1.1}=1+1=2\)
\(2>1;\Rightarrow B>1;\Rightarrow B>A\)
Lời giải :
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
ko chép lại đề :
= \(\frac{1}{1}\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ ......... + \(\frac{1}{98}\)- \(\frac{1}{99}\)+ \(\frac{1}{99}\)- \(\frac{1}{100}\)
= \(1-\frac{1}{100}\)
= \(\frac{99}{100}\)
a) \(\frac{999}{10000}=\frac{99,9}{1000}>\frac{99}{100}\)
=> kết luận
b) \(1-\frac{97}{99}=\frac{2}{99}>1-\frac{98}{100}=\frac{2}{100}\)
\(\Rightarrow\frac{97}{99}< \frac{98}{100}\)
=> kết luận
Ta có:\(\frac{72}{73}=1-\frac{1}{73}\)
\(\frac{98}{99}=1-\frac{1}{99}\)
Vì \(\frac{1}{73}>\frac{1}{99}\) nên \(\frac{98}{99}>\frac{72}{73}\)
Giãn ước phân số 99x98/98x99 ta có : 99/99 mà 99 - 1/99 = 98/99
Vậy : A = B
Mình không chắc đã đúng đâu nhưng mình cứ giair thử nhé !
Ta có :
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ ... + \(\frac{1}{99}-\frac{1}{100}\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)+ \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)x 2
= \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)- \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
= \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)= B
Vậy , A = B
~ Chúc bạn học giỏi ! ~
\(A=\frac{98}{99}=1-\frac{1}{99}< 1\)
\(B=\frac{98.99+1}{99.98}=\frac{98.99}{99.98}+\frac{1}{99.98}=1+\frac{1}{99.98}>1\)
Vậy \(A< B\)
p/s: chúc bạn học tốt
Ta có : \(\frac{98.99+1}{99.98}>\frac{98.99}{99.98}=1\)
\(\frac{98}{99}< 1\)
\(=>\frac{98.99+1}{99.98}>\frac{98}{99}\)