Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thì tính tổng tử M áp dụng công thức thì tử M=
101*(101+1)/2=5151
mẫu M=
(101-100)+(99-98)+...+(3-2)+(1-0)(có 51 cặp số)
=1+1+1+...+1+1(có 51 cặp số)
=1*51
=51
M=5151/51
M=101
Dễ thấy A < 1. Áp dụng nếu \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ta có :
\(A=\frac{100^{100}+1}{100^{99}+1}<\frac{\left(100^{100}+1\right)+\left(100^{31}-1\right)}{\left(100^{99}+1\right)+\left(100^{31}-1\right)}=\frac{100^{100}+100^{31}}{100^{99}+100^{31}}=\frac{100^{31}.\left(100^{69}+1\right)}{100^{31}.\left(100^{68}+1\right)}=\frac{100^{69}+1}{100^{68}+1}=B\)
Vậy A < B
\(\frac{100^{100}+1}{100^{99}+1}=\frac{100^{69}+1}{100^{68}+1}\)
a)Đặt A= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\) => A=\(\frac{1}{2^1}\) - \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) - \(\frac{1}{2^4}\) + \(\frac{1}{2^5}\) - \(\frac{1}{2^6}\)
=> 2A= 1-\(\frac{1}{2^1}\) + \(\frac{1}{2^2}\) - \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) - \(\frac{1}{2^5}\)
=> 3A= 1- \(\frac{1}{2^6}\) <1 => A<\(\frac{1}{3}\) => đpcm.
b) Đặt B=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) - \(\frac{4}{3^4}\) +..+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\)
=> 3B=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\) +...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)
=> 4B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) - \(\frac{100}{3^{99}}\) < 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) (1)
Đặt B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\)
=> 3B= 3-1+\(\frac{1}{3}\) - \(\frac{1}{3^2}\) + \(\frac{1}{3^3}\) - \(\frac{1}{3^4}\) +...+ \(\frac{1}{3^{98}}\)
=> 4B= 3-\(\frac{1}{3^{99}}\) <3 => B<\(\frac{3}{4}\) (2)
=> 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.
trong sách 500 bài toán cơ bản và nâng cao có đó vào mà tra có nhiều dạng toán hay lém
Đặt A=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) +\(\frac{3}{3^3}\) - \(\frac{4}{3^4}\)+...+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\)
=> 3A=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\)+...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)
=> 4A=1-\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{3^{98}}\) - \(\frac{1}{3^{99}}\)- \(\frac{100}{3^{100}}\)
=> 4A<1-\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{3^{98}}\) - \(\frac{1}{3^{99}}\) (1)
Đặt B=1-\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{3^{98}}\) - \(\frac{1}{3^{99}}\)
=> B=2+ \(\frac{1}{3}\) - \(\frac{1}{3^2}\) +...+\(\frac{1}{3^{97}}\) - \(\frac{1}{3^{98}}\)
=> 4B=B+3B=3-\(\frac{1}{3^{99}}\)<3 => A<\(\frac{3}{4}\) (2)
Từ (1) và (2) ta có: 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.
A=1+4+42+43+...+499
=>4A=4+42+43+44+...+4100
=>4A-A=(4+42+43+44+...+4100)-(1+4+42+43+...+499)
=>3A=4100-1
=>A=\(\frac{4^{100}-1}{3}\) < 4100
=>A<B
\(A=1+4+4^2+4^3+...+4^{99}\)
=> \(4A=4+4^2+4^3+4^4+...+4^{100}\)
=> \(4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)
=> \(3A=4^{100}-1\)
=> \(A=\frac{4^{100}-1}{3}\)
Ta có : \(B=4^{100}\) => \(\frac{B}{3}=\frac{4^{100}}{3}\)
Vì \(4^{100}-1<4^{100}\) => \(\frac{4^{100}-1}{3}<\frac{4^{100}}{3}\) => \(A<\frac{B}{3}\) (đpcm)
A<0
B>0