Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, \(\left(\dfrac{8}{15}+\dfrac{14}{23}\right)-\left(\dfrac{5}{15}-\dfrac{9}{23}\right)\)
\(=\dfrac{8}{15}+\dfrac{14}{23}-\dfrac{5}{15}+\dfrac{9}{23}\)
\(=\left(\dfrac{8}{15}-\dfrac{5}{15}\right)+\left(\dfrac{14}{23}+\dfrac{9}{23}\right)\)
\(=\dfrac{3}{15}+1\)
\(=1\dfrac{1}{5}\)
B, \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
\(=1-\dfrac{1}{6}\)
\(=\dfrac{5}{6}\)
a) \(=\dfrac{8}{15}+\dfrac{14}{23}-\dfrac{5}{15}+\dfrac{9}{23}\)
\(=\dfrac{8}{15}-\dfrac{5}{15}+\dfrac{14}{23}+\dfrac{9}{23}\)
\(=\dfrac{1}{5}+1\)
\(=\dfrac{6}{5}\)
b)
B=\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
B=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
B=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
B= 1-\(\dfrac{1}{8}\)
B= \(\dfrac{7}{8}\)
\(A=\dfrac{5}{9}-\dfrac{5}{8}+\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{-3}{8}+\dfrac{1}{3}\\ =\dfrac{5}{9}+\dfrac{-5}{8}+\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{-3}{8}+\dfrac{1}{3}\\= \left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\left(\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(\dfrac{-5}{8}+\dfrac{-3}{8}\right)\\ =1+1+\left(-1\right)\\ =2+\left(-1\right)\\ =1\)
a, \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{5}{12}+\dfrac{19}{30}\)
\(=\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{5}{12}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{19}{30}\right)\)
\(=1+1=2\)
Chúc bạn học tốt!!!
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{1998.1999}+\dfrac{1}{1999.2000}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1998}-\dfrac{1}{1999}+\dfrac{1}{1999}-\dfrac{1}{2000}\)
\(=1-\dfrac{1}{2000}=\dfrac{1999}{2000}.\)
a/ \(\dfrac{3}{11.12}+\dfrac{3}{12.13}+\dfrac{3}{13.14}+\dfrac{3}{14.15}\)
\(=3\left(\dfrac{1}{11.12}+\dfrac{1}{12.13}+\dfrac{1}{13.14}+\dfrac{1}{14.15}\right)\)
\(=3\left(\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\right)\)
\(=3\left(\dfrac{1}{11}-\dfrac{1}{15}\right)\)
\(=\dfrac{4}{55}\)
b/ \(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}\)
\(=2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
\(=\dfrac{2}{3}\)
c/ \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+.....+\dfrac{3}{97.100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+....+\dfrac{1}{97}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
d/ \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+.....+\dfrac{3}{100.103}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+....+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=\dfrac{1}{2}-\dfrac{1}{103}\)
\(=\dfrac{101}{206}\)
e/ Đặt :
\(A=\dfrac{1}{1.5}+\dfrac{1}{5.10}+....+\dfrac{1}{95.100}\)
\(\Leftrightarrow5A=\dfrac{5}{1.5}+\dfrac{5}{5.10}+....+\dfrac{5}{95.100}\)
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+....+\dfrac{1}{95}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{99}{100}:5=\dfrac{99}{500}\)
Dấu . là dấu nhân nhé <3
a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
b)ĐK: \(n\ne-5\)
\(A=\dfrac{n-2}{n+5}=\dfrac{n+5-7}{n+5}=1-\dfrac{7}{n+5}\)
Để A nguyên thì \(\dfrac{n-2}{n+5}\)phải nguyên <=> \(\dfrac{7}{n+5}\) nguyên mà n là số nguyên <=> 7 chia hết cho n+5 hay n+5 là Ư(7)
Mà Ư(7)={-1;1;-7;7}
Ta có bảng sau:
n+5 | -1 | 1 | -7 | 7 |
n | -6(TM) | -4(TM) | -12(TM) | 2(TM) |
Vậy n={-6;-4;-12;2} thì A nguyên
a. \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
b, Ta có: \(A=\dfrac{n-2}{n+5}=\dfrac{n+5-7}{n+5}=1-\dfrac{7}{n+5}\)
Để \(A\in Z\) thì \(\dfrac{n-2}{n+5}\in Z\Rightarrow7⋮n+5\Leftrightarrow n+5\in U\left(7\right)=\left\{\pm1;\pm7\right\}\)
Lập bảng giá trị:
\(n+5\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(-4\) | \(-6\) | \(2\) | \(-12\) |
Vậy, với \(x\in\left\{-12;-6;-4;2\right\}\) thì \(A=\dfrac{n-2}{n+5}\in Z\)
c) E = \(\dfrac{4116-14}{10290-35}\) và K = \(\dfrac{2929-101}{2.1919+404}\)
E = \(\dfrac{4116-14}{10290-35}\)
E = \(\dfrac{14.\left(294-1\right)}{35.\left(294-1\right)}\)
E = \(\dfrac{14}{35}\)
K = \(\dfrac{2929-101}{2.1919+404}\)
K = \(\dfrac{101.\left(29-1\right)}{101.\left(38+4\right)}\)
K = \(\dfrac{29-1}{34+8}\)
K = \(\dfrac{28}{42}\) = \(\dfrac{2}{3}\)
Ta có : E = \(\dfrac{14}{35}\) và K = \(\dfrac{2}{3}\)
\(\dfrac{14}{35}\) = \(\dfrac{42}{105}\)
\(\dfrac{2}{3}\) = \(\dfrac{70}{105}\)
Vậy E < K
Các câu còn lại tương tự
\(B=\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\left(1+\dfrac{1}{24}\right).....\left(1+\dfrac{1}{440}\right)\left(1+\dfrac{1}{483}\right)\)
\(B=\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}.....\dfrac{441}{440}.\dfrac{484}{483}\)
\(B=\dfrac{9.16.25.....441.484}{8.15.24.....440.483}\)
\(B=\dfrac{3.3.4.4.5.5.....21.21.22.22}{2.4.3.5.4.6.....20.22.21.23}\)
\(B=\dfrac{3.4.5.....21.22}{2.3.4.....20.21}.\dfrac{3.4.5.....21.22}{4.5.6.....22.23}\)
\(B=11.\dfrac{3}{23}=\dfrac{33}{23}\)
B = \(\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}...\dfrac{121}{120}.\dfrac{144}{143}\)
B = \(\dfrac{4.9.16.25...121.144}{3.8.15.24....120.143}\)
B = \(\dfrac{2.2.3.3.4.4.5.5...11.11.12.12}{1.3.2.4.3.5.4.6...10.12.11.13}\)
B = \(\dfrac{2.3.4.5...11.12}{1.2.3.4.5...10.11}.\dfrac{2.3.4.5...11.12}{3.4.5.6.7...12.13}\)
B = 12 . \(\dfrac{2}{13}\)
B = \(\dfrac{24}{13}\)
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)
\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{98}{99}=\dfrac{49}{99}>\dfrac{49}{100}=A\)