K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(10A=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

\(10B=\dfrac{10^{2023}+10}{10^{2023}+1}=1+\dfrac{9}{10^{2023}+1}\)

Ta có: \(10^{2022}+1< 10^{2023}+1\)

=>\(\dfrac{9}{10^{2022}+1}>\dfrac{9}{10^{2023}+1}\)

=>\(1+\dfrac{9}{10^{2022}+1}>1+\dfrac{9}{10^{2023}+1}\)

=>10A>10B

=>A>B

\(10A=\dfrac{10^{2023}+10}{10^{2023}+1}=1+\dfrac{9}{10^{2023}+1}\)

\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

2023>2022

=>10^2023+1>10^2022+1

=>10A<10B

=>A<B

\(\dfrac{1}{10}A=\dfrac{10^{2023}+5}{10^{2023}+50}=1-\dfrac{45}{10^{2023}+50}\)

\(\dfrac{1}{10}B=\dfrac{10^{2022}+5}{10^{2022}+50}=1-\dfrac{45}{10^{2022}+50}\)

10^2023+50>10^2022+50

=>-45/10^2023+50<-45/10^2020+50

=>1/10A<1/10B

=>A<B

16 tháng 2 2023

A phải lớn hơn B vì phần bù của số nào nhỏ hơn thì số đó lớn hơn bạn nhé. Nhưng dù sao cx động viên bạn, mình tick cho. Cảm ơn bạn nhiều

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
$10A=\frac{10^{2021}-10}{10^{2021}-1}=\frac{10^{2021}-1-9}{10^{2021}-1}$

$=1-\frac{9}{10^{2021}-1}>1$

$10B=\frac{10^{2022}+10}{10^{2022}+1}=\frac{10^{2022}+1+9}{10^{2022}+1}$

$=1+\frac{9}{10^{2022}+1}<1$

$\Rightarrow 10A> 1> 10B$

Suy ra $A> B$

16 tháng 5 2022

Ta có:

\(10A=\dfrac{10\left(10^{2020}+1\right)}{10^{2021}+1}=\dfrac{10^{2021}+10}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)

\(10B=\dfrac{10\left(10^{2021}+1\right)}{10^{2022}+1}=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

⇒ \(10A>10B\) ( vì \(\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\) )

Suy ra:  \(A>B\)

15 tháng 2 2023

A và B có phần mẫu số bằng nhau mà tử A có 10^2023 lớn hơn B có 10^2022 => A > B

10^2023>10^2022

=>10^2023+5>10^2022+5

=>A>B

1 tháng 5 2023

Áp dụng tính chất : Nếu \(\dfrac{a}{b}\) < 1 thì \(\dfrac{a}{b}\) < \(\dfrac{a+n}{b+n}\) ( a ϵ N; b; n ϵ N* )

Ta có \(B=\dfrac{10^{2021}+1}{10^{2022}+1}< \dfrac{10^{2021}+10}{10^{2022}+10}=\dfrac{10\left(10^{2020}+1\right)}{10\left(10^{2021}+1\right)}=\dfrac{10^{2020}+1}{10^{2021}+1}=A\)

Vậy A > B

1 tháng 5 2023

A = \(\dfrac{10^{2020}+1}{10^{2021}+1}\) ⇒ 10\(\times\) A = \(\dfrac{10^{2020}+1}{10^{2021}+1}\) \(\times\) 10

10A = \(\dfrac{10^{2021}+10}{10^{2021}+1}\) =1+\(\dfrac{9}{10^{2021}+1}\)

B = \(\dfrac{10^{2021}+1}{10^{2022}+1}\) ⇒ 10 \(\times\) B = \(\dfrac{10^{2021}+1}{10^{2022}+1}\) \(\times\) 10 

10B = \(\dfrac{10^{2022}+10}{10^{2022}+1}\) = 1 + \(\dfrac{9}{10^{2022}+1}\)

Vì \(\dfrac{9}{10^{2021}+1}\) > \(\dfrac{9}{10^{2022}+1}\)

Vậy 10A > 10B ⇒ A > B 

13 tháng 9 2023

b) \(M=\dfrac{10^{2023}+1}{10^{2024}+1}< 1\) ( Vì tử < mẫu )

Ta có: \(M=\dfrac{10^{2023}+1}{10^{2024}+1}< \dfrac{10^{2023}+1+9}{10^{2024}+1+9}=\dfrac{10^{2023}+10}{10^{2024}+10}=\dfrac{10.\left(10^{2022}+1\right)}{10.\left(10^{2023}+1\right)}=\dfrac{10^{2022}+1}{10^{2023}+1}=N\)

Vì \(\dfrac{10^{2023}+1}{10^{2024}+1}< \dfrac{10^{2022}+1}{10^{2023}+1}\) nên \(M< N\)

\(10A=\dfrac{10^{2023}+10}{10^{2023}+1}=1+\dfrac{9}{10^{2023}+1}\)

\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

mà 10^2023+1>10^2022+1

nên A<B

25 tháng 4 2022

=)

25 tháng 4 2022

Help me

19 tháng 4 2023

A = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2022}{50^8}\)

A = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) +  \(\dfrac{1}{50^8}\)

B = \(\dfrac{2023}{50^{10}}\) + \(\dfrac{2021}{5^8}\) = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{1}{50^{10}}\) + \(\dfrac{2021}{50^8}\)

Vì: \(\dfrac{1}{50^{10}}\) < \(\dfrac{1}{50^8}\) nên \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^{10}}\)  < \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^8}\)

Vậy A > B