Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{10^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{10^{10}-3}=1+\dfrac{2}{10^{10}-3}\)
Vì \(1+\dfrac{2}{20^{10}-1}< 1+\dfrac{2}{20^{10}-3}\Rightarrow A< B\)
Ta có:A=\(\dfrac{20^{10}+1}{20^{10}-1}\)>1\(\Leftrightarrow\)\(\dfrac{20^{10}+1}{20^{10}-1}< \dfrac{20^{10}+1-2}{20^{10}-1-2}\)=\(\dfrac{20^{10}-1}{20^{10}-3}\)=B
Vậy A<B
Ta có :
\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
Vì \(1+\dfrac{2}{20^{10}-1}< 1+\dfrac{2}{20^{10}-3}\)
\(\Rightarrow A< B\)
~ Chúc bn học tốt~
\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\) (1)
\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\) (2)
vì \(20^{10}-1>20^{10}-3\)
nên \(\dfrac{2}{20^{10}-1}< \dfrac{2}{20^{10}-3}\) (3)
từ (1), (2) và (3) suy ra A<B
Ta có :
\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=1\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=1\dfrac{2}{20^{10}-3}\)
Mà \(\dfrac{2}{20^{10}-1}< \dfrac{2}{20^{10}-3}\Rightarrow A< B\)
\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=1\dfrac{2}{20^{10}-1}\) (đổi ra hỗn số)
\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=1\dfrac{2}{20^{10}-3}\)
Do \(20^{10}-1>20^{10}-3\) nên \(\dfrac{2}{20^{10}-1}< \dfrac{2}{20^{10}-3}\Rightarrow1\dfrac{2}{20^{10}-1}< 1\dfrac{2}{20^{10}-3}\Leftrightarrow A< B\)
Đáp số: A <B
\(A=\dfrac{20^{10}-1+2016}{20^{10}-1}=1+\dfrac{2016}{20^{10}-1}\)
\(B=\dfrac{20^{10}-3+2016}{20^{10}-3}=1+\dfrac{2016}{20^{10}-3}\)
mà \(20^{10}-1>20^{10}-3\)
nên A<B
Nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\left(n\in N\right)\)
\(B=\dfrac{10^{20}+1}{10^{21}+1}< 1\)
\(B< \dfrac{10^{20}+1+9}{10^{21}+1+9}\Rightarrow B< \dfrac{10^{20}+10}{10^{21}+10}\Rightarrow B< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\Rightarrow B< \dfrac{10^{19}+1}{10^{20}+1}=A\)\(\Rightarrow B< A\)
ta thấy B>1 nên B=\(\frac{20^{10}-1}{20^{10}-3}\)>\(\frac{20^{10}-1+2}{20^{100}-3+2}\)=\(\frac{20^{10}+1}{20^{10}-1}\)=A
vậy B>A
nếu ko hiểu thì tham khảo trong SBT lớp 6 bài so sánh PS ấy
Vì \(20^{10}-1>20^{10}-3\)
\(\Rightarrow B=\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-3+2}=\frac{20^{10}+1}{20^{10}-1}=A\)
vậy \(A< B\)
a) Ta có : 10A = \(\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}=\frac{10^{2005}+10}{10^{2005}+1}=1+\frac{9}{10^{2005}+1}\)
Lại có 10B = \(\frac{10\left(10^{2005}+1\right)}{10^{2006}+1}=\frac{10^{2006}+10}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\)
Vì \(\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)
=> 10A > 10B
=> A > B
b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
Lại có B = \(\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1-\frac{2}{20^{10}-3}\)
=> A < B
Ta có:
\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
Vì \(\dfrac{2}{20^{10}-1}< \dfrac{2}{20^{10}-3}\)
\(\Rightarrow1+\dfrac{2}{20^{10}-1}< 1+\dfrac{2}{20^{10}-3}\)
\(\Rightarrow A< B\)
Vậy \(A< B\).
Ta có \(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(\Leftrightarrow A=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
\(\Leftrightarrow B=1+\dfrac{2}{20^{10}-3}\)
Vì 1=1 mà\(20^{10}-1>20^{10}-3\Rightarrow\dfrac{2}{20^{10}-1}< \dfrac{2}{20^{10}-3}\Rightarrow1+\dfrac{2}{20^{10}-1}< 1+\dfrac{2}{20^{10}-3}\)
hay A < B
Vậy A < B