K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

A = 2483 − 13 4966 − 26 = 191.13 − 13.1 26.191 − 26.1 = 13.190 26.190 = 1 2 = 18 36

B = 2727 − 101 7575 + 303 = 27.101 − 101.1 75.101 − 3.101 = 101.26 101.72 = 13 36

Vậy A > B

29 tháng 6 2018

a) Ta có:

a = 1002.1001

a = 1002.( 1000 + 1 )

a = 1002.1000 + 1002

b = 1003.1000

b = ( 1002 + 1 ).1000

b = 1002.1000 + 1000

Vậy a = 1002.1000 + 1002

       b = 1002.1000 + 1000

=> a > b

b) Ta có:

a = 2002.2002

a = 2002. ( 2000 + 2 )

a = 2002.2000 + 2002.2

a = 2002.2000 + 4004

b = 2000.2004

b = 2000. ( 2002 + 2 )

b = 2000.2002 + 2000.2

b = 2000.2002 + 4000

Vậy a = 2002.2000 + 4004

       b = 2000.2002 + 4000

=> a > b

c) Ta có:

a = 2016.2016

a = 2016.( 2014 + 2 )

a = 2016.2014 + 2016.2

b = 2014.2015

b = 2014. ( 2016 - 1 )

b = 2014.2016 - 2014

Vậy a = 2016.2014 + 2016.2

       b = 2014.2016 - 2014

=> a > b

20 tháng 7 2016

A = 123 × 123

A = (121 + 2) × 123

A = 121 × 123 + 2 × 123

B = 121 × 124

B = 121 × (123 + 1)

B = 121 × 123 + 121

Vì 2 x 123 > 121

=> A > B

20 tháng 7 2016

theo đề bài ta có:

A=123 * 123

A=123*(121+2)

A=123*121 +123*2

B=121*124

B=121*(123+1)

B=123*121+121*1

B=121*123+121

vì 123*2>121=>a>b

1 tháng 5 2016

a/b>a+m/b+m

1 tháng 5 2016

bang nhau

2 tháng 4 2017

\(2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{2016}{2^{2015}}\)

\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}-\frac{2016}{2^{2016}}\)

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}-\frac{1}{2^{2016}}< 1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)(1)

Ta có

\(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{2014}}-\frac{1}{2^{2015}}\right)=1+\left(1-\frac{1}{2^{2015}}\right)\)

\(< 1+1=2\)(2)

Từ (1) và (2) ta có A<2

Vậy A<B

2 tháng 4 2017

A=\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+.........+\frac{2016}{2^{2016}}\\ 2A=1+\frac{2}{2}+\frac{3}{2^2}+........+\frac{2016}{2^{2015}}\\ 2A-A=\left(\frac{2}{2}-\frac{1}{2}\right)+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+.........\left(\frac{2016}{2^{2015}}-\frac{2015}{2^{2015}}\right)+\left(1-\frac{2016}{2^{2015}}\right)\\ A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2015}}+\left(1-\frac{2016}{2^{2015}}\right)\)

\(GọiC=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2015}}\\ 2C=1+\frac{1}{2}+\frac{1}{2^3}+......+\frac{1}{2^{2014}}\\ 2C-C=C=1-\frac{1}{2^{2015}}\)

Thay C vào A , ta có : A = 1 - 1/2^2015 + 1 - 1/2^2016  =2 - 1/2^2015 - 1/2^2016<2  =B->A<B

27 tháng 7 2019

\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)

\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)

Vì 1 = 1 và \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\) nên A > B

Vậy A > B

Chắc sai =))

27 tháng 7 2019

\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=\frac{2003\cdot2004}{2003\cdot2004}-\frac{1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)

\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=\frac{2004\cdot2005}{2004\cdot2005}-\frac{1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)

có : \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\)

\(\Rightarrow1-\frac{1}{2003\cdot2004}< 1-\frac{1}{2004\cdot2005}\)

\(\Rightarrow A< B\)

3 tháng 4 2019

a+n/b+n nha mình quên không giữ shift

3 tháng 4 2019

Trường hợp 1 : \(\frac{a}{b}=1\Leftrightarrow a=b\)  thì \(\frac{a+n}{b+n}=\frac{a}{b}=1\)

Trường hợp 2 : \(\frac{a}{b}>1\Leftrightarrow a>b\Leftrightarrow a+n>b+n\)

Mà  \(\frac{a+n}{b+n}\) có phần thừa so với 1 là \(\frac{a-b}{b+n}\)\(\frac{a}{b}\)có phần thừa so với 1 là  \(\frac{a-b}{b},\) vì \(\frac{a-b}{b+n}< \frac{a-b}{b}\)nên 

\(\frac{a+n}{b+n}< \frac{a}{b}\)

Trường hợp 3 :  \(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow a+n< b+n\) khi đó \(\frac{a+n}{b+n}\)có phần bù tới 1 là \(\frac{b-a}{b+n}\)\(\frac{a}{b}\)có phần bù tới 1 là \(\frac{b-a}{b},\)vì \(\frac{b-a}{b+n}< \frac{b-a}{b}\)nên \(\frac{a}{b}< \frac{a+n}{b+n}\)

Study well ! >_<

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Lời giải:

a. $\frac{-10}{-11}=\frac{10}{11}>0 >\frac{5}{-8}$

b. 

$\frac{99}{100}< 1< \frac{95}{94}$