Trường hợp 1 : \(\frac{a}{b}=1\Leftrightarrow a=b\) thì \(\frac{a+n}{b+n}=\frac{a}{b}=1\)
Trường hợp 2 : \(\frac{a}{b}>1\Leftrightarrow a>b\Leftrightarrow a+n>b+n\)
Mà \(\frac{a+n}{b+n}\)có phần thừa so với 1 là \(\frac{a-b}{b+n}\); \(\frac{a}{b}\)có phần thừa so với 1 là \(\frac{a-b}{b},\)vì \(\frac{a-b}{b+n}< \frac{a-b}{b}\)nên
\(\frac{a+n}{b+n}< \frac{a}{b}\)
Trường hợp 3 : \(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow a+n< b+n\)khi đó \(\frac{a+n}{b+n}\)có phần bù tới 1 là \(\frac{b-a}{b+n}\); \(\frac{a}{b}\)có phần bù tới 1 là \(\frac{b-a}{b},\)vì \(\frac{b-a}{b+n}< \frac{b-a}{b}\)nên \(\frac{a}{b}< \frac{a+n}{b+n}\)
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
a+n/b+n nha mình quên không giữ shift
Trường hợp 1 : \(\frac{a}{b}=1\Leftrightarrow a=b\) thì \(\frac{a+n}{b+n}=\frac{a}{b}=1\)
Trường hợp 2 : \(\frac{a}{b}>1\Leftrightarrow a>b\Leftrightarrow a+n>b+n\)
Mà \(\frac{a+n}{b+n}\) có phần thừa so với 1 là \(\frac{a-b}{b+n}\); \(\frac{a}{b}\)có phần thừa so với 1 là \(\frac{a-b}{b},\) vì \(\frac{a-b}{b+n}< \frac{a-b}{b}\)nên
\(\frac{a+n}{b+n}< \frac{a}{b}\)
Trường hợp 3 : \(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow a+n< b+n\) khi đó \(\frac{a+n}{b+n}\)có phần bù tới 1 là \(\frac{b-a}{b+n}\); \(\frac{a}{b}\)có phần bù tới 1 là \(\frac{b-a}{b},\)vì \(\frac{b-a}{b+n}< \frac{b-a}{b}\)nên \(\frac{a}{b}< \frac{a+n}{b+n}\)
Study well ! >_<