Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2010}=\dfrac{2010}{a}=\dfrac{a+b+c+2010}{b+c+2010+a}=1\)
\(\dfrac{2010}{a}=1\Rightarrow a=2010\);
\(\dfrac{c}{2010}=1\Rightarrow c=2010\);
\(\dfrac{b}{c}=1\Rightarrow\dfrac{b}{2010}=1\Rightarrow b=2010\).
Vậy (a, b, c) = (2010; 2010; 2010)
3)
a) \(A=\sqrt{x+24}+\dfrac{4}{7}\)
Có: \(\sqrt{x+24}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\in R\)
\(\Rightarrow A\ge\dfrac{4}{7}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+24}=0\Rightarrow x+24=0\Rightarrow x=-24\)
Vậy GTNN của \(A=\dfrac{4}{7}\Leftrightarrow x=-24\)
b) \(B=\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\)
Có: \(\sqrt{2x+\dfrac{4}{13}}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\ge-\dfrac{13}{191}\forall x\in R\)
\(\Rightarrow B\ge-\dfrac{13}{191}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{2x+\dfrac{4}{13}}=0\)
\(\Rightarrow2x+\dfrac{4}{13}=0\)
\(\Rightarrow2x=-\dfrac{4}{13}\)
\(\Rightarrow x=-\dfrac{2}{13}\)
Vậy GTNN của \(B=-\dfrac{13}{191}\Leftrightarrow x=-\dfrac{2}{13}\)
4)
a) \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\)
Có: \(\sqrt{x+\dfrac{5}{41}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}\le0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\forall x\in R\)
\(\Rightarrow A\le\dfrac{7}{12}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+\dfrac{5}{41}}=0\)
\(\Rightarrow x+\dfrac{5}{41}=0\)
\(\Rightarrow x=-\dfrac{5}{41}\)
Vậy GTLN của \(A=\dfrac{7}{12}\Leftrightarrow x=-\dfrac{5}{41}\)
b) \(B=\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\)
Có: \(\sqrt{x-\dfrac{2}{3}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x-\dfrac{2}{3}}\le0\forall x\in R\)
\(\Rightarrow\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\le\dfrac{-5}{13}\forall x\in R\)
\(\Rightarrow B\le\dfrac{-5}{13}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-\dfrac{2}{3}}=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\)
\(\Rightarrow x=\dfrac{2}{3}\)
Vậy GTLN của \(B=\dfrac{-5}{13}\Leftrightarrow x=\dfrac{2}{3}\)
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
a, \(\dfrac{13}{32}+\dfrac{8}{24}+\dfrac{19}{32}+\dfrac{2}{3}\)
\(=\left(\dfrac{13}{32}+\dfrac{19}{32}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\dfrac{32}{32}+\dfrac{3}{3}=1+1=2\)
b, \(\dfrac{3}{4}.36\dfrac{1}{5}-\dfrac{3}{4}.2\dfrac{1}{5}\)
\(=\dfrac{3}{4}.\left(36\dfrac{1}{5}-2\dfrac{1}{5}\right)\)
\(=\dfrac{3}{4}.\left[\left(36-2\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)\right]\)
\(=\dfrac{3}{4}.34=\dfrac{102}{4}=26\)
Bài 2:
a: x=27/10:9/5=27/10*5/9=135/90=3/2
b: =>|x|=1,75
=>x=1,75 hoặc x=-1,75
c: =>\(2-x=\sqrt[3]{25}\)
hay \(x=2-\sqrt[3]{25}\)
d: =>3^x-1*6=162
=>3^x-1=27
=>x-1=3
=>x=4
1.
a. \(0,5\sqrt{100}-\sqrt{\dfrac{4}{25}}=5-\dfrac{2}{5}=\dfrac{23}{5}>1\)
\(\dfrac{\left(\sqrt{1\dfrac{1}{9}}-\sqrt{\dfrac{9}{16}}\right)}{5}=\dfrac{\dfrac{\sqrt{10}}{3}-\dfrac{3}{4}}{5}=\dfrac{-9+4\sqrt{10}}{60}\approx0,06< 1\)
\(\Rightarrow0,5\sqrt{100}-\sqrt{\dfrac{4}{25}}>\dfrac{\left(\sqrt{1\dfrac{1}{9}}-\sqrt{\dfrac{9}{16}}\right)}{5}\)
2.
Ta có:
\(\left(\sqrt{a+b}\right)^2=a+b\)
\(\left(\sqrt{a}+\sqrt{b}\right)=\left(\sqrt{a}\right)^2+2\sqrt{ab}+\left(\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)
=> \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
1b.
Áp dụng công thức trên
=> \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
2.
\(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\\ \Rightarrow a+b< a+2\sqrt{ab}+b\\ \Rightarrow2\sqrt{ab}>0\\ \Rightarrow\sqrt{ab}>0\)
Luôn đúng với mọi a;b dươn g
=> đpcm
Bài 1:
a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)
=>2 căn x=6
=>căn x=3
=>x=9
b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)
=>x=1
1)
a) \(\sqrt{x+2}=\dfrac{5}{7}\)
-> x+2 = \(\left(\dfrac{5}{7}\right)^{^2}\)=\(\dfrac{25}{49}\)
-> x = \(\dfrac{25}{49}-2=-\dfrac{73}{49}\)
b) \(\sqrt{x+2}-8=1\)
-> \(\sqrt{x+2}=1+8=9\)
-> \(x+2=9^2=81\)
-> x = 81 -2 = 79
c) 4 - \(\sqrt{x-0,2}=0,5\)
-> \(\sqrt{x-0,2}=4-0,5=3,5\)
-> x - 0,2 = (3,5)2 = 12,25
-> x = 12,25 +0,2 = 12,45
2) a)
Với mọi x thì: \(\sqrt{x+24}\ge0\)
=> \(\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\)
Dấu "=" xảy ra khi : x + 24 = 0 <=> x = -24
Vậy MinA = \(\dfrac{4}{7}\) khi x = -24
B1
a. = 7/3. ( 37/5 - 32/5)
= 7/3 . 1
= 7/3
Phần b có gì đó sai sao lại có 3:+
c. = 4 + 6 - 3 + 5
= 12
d. = -5/21 : -19/21 : 4/5
= 25/76
B2
a. 1/4 : x =1/2 - 3/4
x = -1/4
x = 1/4 : -1/4
x = -1
b. 2 . | 2x - 3 | = 4 - (-8)
2 . | 2x - 3| = 12
| 2x - 3 | = 12:2
| 2x - 3 | = 6
| x - 3 | = 6:2
| x - 3 | = 3
=> x - 3 = +- 3
* x - 3 = 3
x = 6
* x - 3 = -3
x = 0
Chúc bạn vui vẻ
Lời giải:
a)
\(\sqrt{10}> \sqrt{9}\Leftrightarrow \sqrt{10}> 3\)
\(\sqrt{5}> \sqrt{4}\Leftrightarrow \sqrt{5}> 2\)
\(\Rightarrow \sqrt{10}+\sqrt{5}>3+2\Leftrightarrow \sqrt{10}+\sqrt{5}> 5\) (1)
Mặt khác \(\sqrt{24}< \sqrt{25}\Leftrightarrow \sqrt{24}< 5\) (2)
Từ \((1);(2)\Rightarrow \sqrt{10}+\sqrt{5}> \sqrt{24}\)
b) Đặt \(\frac{a}{b}=\frac{b}{c}=k\Rightarrow a=bk; b=ck\)
Khi đó:
\(\frac{a}{c}=\frac{bk}{c}=\frac{ck.k}{c}=k^2(3)\)
Và áp dụng tính chất dãy tỉ số bằng nhau:
\(k^2=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}(4)\)
Từ \((3);(4)\Rightarrow \frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)