K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2015

1) a < b 
Khi đó ta có ab + 2009a < ab + 2009b hay a(b+2009) < b(a+2009) 
Chia 2 vế cho b(b+2009) ta được a/b < (a+2009)/(b+2009) 

2) a = b ---> a/b = (a+2009)/(b+2009) = 1 

3) a > b 
Khi đó ta có ab + 2009a > ab + 2009b hay a(b+2009) > b(a+2009) 
Chia 2 vế cho b(b+2009) ta được a/b > (a+2009)/(b+2009) 

Tóm lại 
a/b < (a+2009)/(b+2009) nếu a < b 
a/b = (a+2009)/(b+2009) nếu a = b 
a/b > (a+2009)/(b+2009) nếu a > b

13 tháng 3 2017

mình cũng có bài giống như này nhưng chưa làm được

8 tháng 4 2017

mình cũng thế

27 tháng 9 2016

Tớ cũng có bài này nhưng chưa làm được

4 tháng 3 2017

cau tra loi la 50 khong can biet lam the nao

14 tháng 2 2016

sẽ bằng nhau 

14 tháng 2 2016

câu hỏi tương tự

30 tháng 1 2023

Ta có :

�=20092010−220092011−2<1

⇔�<20092010−2+201120092011−2+2011=20092010+200920092011+2009=2009(20092009+1)2009(20092010+1)=20092009+120092010+1=�

⇔�>�

Giải:

Ta có:

A=20092008+1/20092009+1

2009A=20092009+2009/20092009+1

2009A=20092009+1+2008/20092009+1

2009A=20092009+1/20092009+1 + 2008/20092009+1

2009A=1+2008/20092009+1

Tương tự:

B=20092009+1/20092010+1

2009B=1+2008/20092010+1

Vì 2008/20092009+1 > 2008/20092010+1 nên 2009A>2009B

⇒A>B

31 tháng 7 2023

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2009.2009}\)

\(\dfrac{1}{2.2}< \dfrac{1}{1.2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3.3}< \dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)

\(\dfrac{1}{4.4}< \dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4}\)

...

\(\dfrac{1}{2009.2009}< \dfrac{1}{2008.2009}=\dfrac{1}{2008}-\dfrac{1}{2009}\)

\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2009.2009}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...\dfrac{1}{2008}-\dfrac{1}{2009}=1-\dfrac{1}{2009}< 1\)

\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2009.2009}< 1\)

31 tháng 7 2023

Ta có:

\(\dfrac{1}{2\times2}+\dfrac{1}{3\times3}+\dfrac{1}{4\times4}+...+\dfrac{1}{2009\times2009}< \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{2008\times2009}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}=1-\dfrac{1}{2009}< 1\)

12 tháng 4 2017

Bạn Edogawa giải thích rõ hơn cho mình hiểu được không?

12 tháng 4 2017

dễ quá cái này so sánh B với 1 sau đó suy ra B< B- thêm tử và mẫu 2011

1 tháng 4 2019

\(A=\left(2010^{2009}+2009^{2009}\right)^{2010}\)

\(=\left(2010^{2009}+2009^{2009}\right)^{2009}\left(2010^{2009}+2009^{2009}\right)\)

\(>\left(2010^{2009}+2009^{2009}\right)^{2009}.2010^{2009}\)

\(=\left(2010.2010^{2009}+2010.2009^{2009}\right)^{2009}\)

\(>\left(2010.2010^{2009}+2009.2009^{2009}\right)^{2009}\)

\(=\left(2010^{2010}+2009^{2010}\right)^{2009}=B\)

Vậy \(A>B\)

Dạo này anh ít on lắm em có nhờ thì em kiếm kênh khác nhờ không thì phải đợi a on a mới làm được nhé

1 tháng 4 2019

E có cách khác a ơi :)