K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm 

Đặt a - b = x ; b - c = y ; c - a = z 

 => x + y + z = 0

 Ta có :

          \(N=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2.\left(\frac{x+y+z}{xyz}\right)\)

=>     \(N=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)( Vì x + y + z = 0 )

Vậy ta có đpcm

29 tháng 10 2017

\(4^{x+1}.2=32\)

\(4^{x+1}=32:2\)

\(4^{x+1}=16\)

\(4^{x+1}=4^2\)

\(\Rightarrow x+1=2\)

\(\Rightarrow x=1\)

vậy \(x=1\)

\(\left(x-\frac{2}{3}\right)^2=\frac{25}{81}\)

\(\left(x-\frac{2}{3}\right)^2=\left(\frac{5}{9}\right)^2\)

\(\Rightarrow x-\frac{2}{3}=\frac{5}{9}\)

\(\Rightarrow x=\frac{11}{9}\)

vậy \(x=\frac{11}{9}\)

\(500^{300}=\left(500^3\right)^{100}=125000000^{100}\)

\(300^{500}=\left(300^5\right)^{100}\)

vì \(\left(500^3\right)^{100}< \left(300^3\right)^{100}\)nên\(500^{300}< 300^{500}\)

\(4^{45}=\left(4^9\right)^5=262144^5\)

\(3^{60}=\left(3^{12}\right)^5=531441^5\)

vì  \(262144^5< 531441^5\) nên \(4^{45}< 3^{60}\)

18 tháng 8 2017

a) ta có : \(9^{87}=\left(3^2\right)^{87}=3^{174}\)\(27^{58}=\left(3^3\right)^{58}=3^{174}\)

ta có : \(3^{174}=3^{174}\) \(\Rightarrow9^{87}=27^{58}\)

b) ta có :\(\left(2^2\right)^3=2^6\)\(2^{2^3}=2^8\)

ta có : \(2^6< 2^8\) \(\Rightarrow\left(2^2\right)^3< 2^{2^3}\)

c) ta có : \(2^{3^2}=2^9\)\(2^{2^3}=2^8\)

ta có : \(2^9>2^8\) \(\Rightarrow2^{3^2}>2^{2^3}\)

mấy bài sau bn lm tương tự nha

29 tháng 10 2017

d) Ta có :

\(4^{30}=2^{60}\)

\(3.24^{10}=72^{10}=2^{360}\)

\(2^{60}< 2^{360}\)

Vậy \(4^{30}< 3.24^{10}\)

26 tháng 6 2017

câu 1=0

câu 2=3.

5 tháng 10 2018

\(\left(2x-3\right)^3=\left(1-x\right)^3\)

\(=>2x-3=1-x\)

\(=>3x=4=>x=\frac{4}{3}\)

5 tháng 10 2018

\(\left(x-1\right)^3-\left(x-1\right)^2=0\)

\(\left(x-1\right)^2.\left[\left(x-1\right)-1\right]=0\)

\(=>\orbr{\begin{cases}\left(x-1\right)^2=0\\x-2=0\end{cases}}\)

\(=>\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy..

24 tháng 3 2017

Bài 1:

\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+1986}\right)\)

Nhận xét: \(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Do đó: \(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+1986}\right)\)

\(=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot...\cdot\frac{1985\cdot1988}{1986\cdot1987}=\frac{1\cdot4\cdot1988}{1986\cdot3}=\frac{3976}{2979}\)

Bài 2:

\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^x\)

\(\Rightarrow\frac{4\cdot4^5}{3\cdot3^5}\cdot\frac{6\cdot6^5}{2\cdot2^5}=2^x\)\(\Rightarrow\frac{4^6}{3^6}\cdot\frac{6^6}{2^6}=2^x\)

\(\Rightarrow\frac{\left(2^2\right)^6}{3^6}\cdot\frac{\left(2\cdot3\right)^6}{2^6}=2^x\)\(\Rightarrow\frac{2^{12}}{3^6}\cdot\frac{2^6\cdot3^6}{2^6}=2^x\)

\(\Rightarrow\frac{2^6\cdot3^6\cdot2^{12}}{2^6\cdot3^6}=2^x\)\(\Rightarrow2^{12}=2^x\Rightarrow x=12\)

25 tháng 3 2017

đúng rồi đó bạn ks bạn ý đi chứ

15 tháng 5 2017

a) Thiếu đề (hoặc sai)

b) x đâu?

c)\(3x-1=x+2\)

\(\Rightarrow3x-x=2+1\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\frac{3}{2}\)

c) \(\frac{x+2}{5}=\frac{2-3x}{3}\)

\(\Rightarrow3.\left(x+2\right)=5.\left(2-3x\right)\)

\(\Rightarrow3x+6=10-15x\)

\(\Rightarrow3x+15x=10-6\)

\(\Rightarrow18x=4\)

\(\Rightarrow x=\frac{4}{18}=\frac{2}{9}\)

15 tháng 5 2017

câu 1 là \(x\times\left(4.6+\frac{3}{5}\right)=7.2-8.15\)

câu 2 là \(42+\frac{3}{7}.\left[3\times x-1=12\right]\)

29 tháng 7 2019

2 ) So sánh 333^444 và 444^333: 
Có 333^444=(333^4)^111 và 444^333=(444^3)^111 
Như vậy ta cần so sánh 333^4 và 444^3: 
Vì 333^4/444^3=3^4*111^4/(4^3*111^3)=3^4*11... nên 333^4>444^3 do đó 
333^444>444^333 

1,\(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

Aps dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{12\left(x+y+z\right)}{49}=\frac{12.147}{49}=\frac{1764}{49}\)=36

\(\Rightarrow\hept{\begin{cases}x=36.18:12=54\\y=36.16:12=48\\z=36.15:12=45\end{cases}}\)

Vậy:.......