Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) 2 = √ 4 V ì 4 > 3 n ê n √ 4 > √ 3 ( đ ị n h l í ) V ậ y 2 > √ 3 b ) 6 = √ 36 V ì 36 < 41 n ê n √ 36 < √ 41 V ậ y 6 < √ 41 c ) 7 = √ 49 V ì 49 > 47 n ê n √ 49 > √ 47 V ậ y 7 > √ 47
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
\(2=\sqrt{4}>\sqrt{3}\)
\(6=\sqrt{36}< \sqrt{41}\)
\(7=\sqrt{49}>\sqrt{47}\)
Trả lời:
a) ta có: 2 = √4
Vì 4 > 3 nên √4 > √3
Vậy 2 > √3
b) Ta có: 6 = √36
Vì 36 < 41 nên √36 < √41
Vậy 6 < √41
c) ta có 7 = √49
Vì 49 > 47 nên √49 > √47
Vậy 7 > √47
\(a\)
\(\sqrt{11}+\sqrt{19}\)
\(=\)\(\sqrt{11+19}\)
\(=\)\(\sqrt{30}\)
\(=\)\(5,47\)
\(\sqrt{47}\)
\(=6,85\)
\(5,47\)\(< \)\(6,85\)
\(=>\)\(\sqrt{11}+\sqrt{19}\)\(< \)\(\sqrt{47}\)
\(b\)
\(\sqrt{7}+\sqrt{26}+1\)
\(=\)\(\sqrt{7+26}+1\)
\(=\)\(\sqrt{33}+1\)
\(=\)\(5,74+1\)
\(=\)\(6,74\)
\(\sqrt{63}\)
\(=\)\(7,93\)
\(6,74\)\(< \)\(7,93\)
\(=>\)\(\sqrt{7}+\sqrt{26}+1\)\(< \)\(\sqrt{63}\)
Học tốt!!!
a) \(1=\sqrt{1}< \sqrt{2}\)
b) \(2=\sqrt{4}>\sqrt{3}\)
c) \(6=\sqrt{36}< \sqrt{41}\)
d) \(7=\sqrt{49}>\sqrt{47}\)
e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)
f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)
g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)
h) \(\sqrt{3}>0>-\sqrt{12}\)
i) \(5=\sqrt{25}< \sqrt{29}\)
\(\Rightarrow-5>-\sqrt{29}\)
a,Ta có:\(2=\sqrt{4}\)
Vì \(\sqrt{4}>\sqrt{3}\)
\(\Rightarrow2>\sqrt{3}\)
b,Ta có:\(6=\sqrt{36}\)
Vì \(\sqrt{36}< \sqrt{41}\)
\(\Rightarrow6< \sqrt{41}\)
c,Ta có:\(7=\sqrt{49}\)
Vì \(\sqrt{49}>\sqrt{47}\)
\(\Rightarrow7>\sqrt{47}\)
a) 2 =√4 > √3 ;
b) 6=√36 < √41 ;
c) 7=√49 > √47
Sửa đề: Cái phân số cuối cùng phải là \(\frac{1}{\sqrt{1998.1}}\) nha bạn :)
Giải: Ta thấy các số hạng của S đều có dạng \(\frac{1}{\sqrt{k\left(1999-k\right)}}\) với \(k\in N;1\le k\le1998\)
Áp dụng BĐT Cô-si dạng \(\sqrt{ab}\le\frac{a+b}{2}\) (Đẳng thức xảy ra khi và chỉ khi a = b) ta có
\(\frac{1}{\sqrt{k\left(1999-k\right)}}\ge\frac{1}{\frac{k+1999-k}{2}}=\frac{2}{1999}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(k=1999-k\) \(\Leftrightarrow\) \(k=\frac{1999}{2}\) (vô lý vì \(k\in N\)).
Do đó đẳng thức không xảy ra, hay \(\frac{1}{\sqrt{k\left(1999-k\right)}}>\frac{2}{1999}\)
Mà S có 1998 số dạng \(\Rightarrow\) \(S>2.\frac{1998}{1999}\)
7 = √49
Vì 49 > 47 nên √49 > √47
Vậy 7 > √47