Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
a) \(2\) và \(\sqrt{3}\)
Bình phương cả hai số ta được :
\(2^2=4;\sqrt{3}^2=3\)\(\Rightarrow2^2>\sqrt{3}^2\left(4>3\right)\rightarrow2>\sqrt{3}\)
b) \(6\) và \(\sqrt{41}\)
Bình phương như câu a ta được : \(6^2< 41^2\Rightarrow6< \sqrt{41}\)
c) 7 và \(\sqrt{47}\)
\(7^2>\sqrt{47}^2\Rightarrow7>\sqrt{47}\)
a.2>\(\sqrt{3}\)
b.6<\(\sqrt{41}\)
c.7>\(\sqrt{47}\)
a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)
ta có \(\sqrt{5}>\sqrt{3}\)và\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
a/ giả sử \(\sqrt{7}-\sqrt{2}< 1\)
\(\Leftrightarrow\sqrt{7}< 1+\sqrt{2}\)
\(\Leftrightarrow 7< 1+2\sqrt{2}+2\)
\(\Leftrightarrow4< 2\sqrt{2}\Leftrightarrow16< 8\left(sai\right)\)
vậy \(\sqrt{7}-\sqrt{2}>1\)
câu b, c bạn làm tương tụ nhé , giả sử một đẳng thức tạm, sau đó bình phương lên rồi làm theo như trên là được nha
Bài này cũng dễ
a, \(\sqrt{7}-\sqrt{2}\) lớn hơn \(1\) . Vì
\(\sqrt{7}-\sqrt{2}=1,231537749\)
\(1=1\)
b, \(\sqrt{8}+\sqrt{5}\) bé hơn \(\sqrt{7}+\sqrt{6}\) . Vì
\(\sqrt{8}+\sqrt{5}=5,064495102\)
\(\sqrt{7}+\sqrt{6}=5,095241054\)
c, \(\sqrt{2005}+\sqrt{2007}\) lớn hơn \(\sqrt{2006}\) . Vì
\(\sqrt{2005}+\sqrt{2007}=89,57677992\)
\(\sqrt{2006}=44,78839135\)
\(a\)
\(\sqrt{11}+\sqrt{19}\)
\(=\)\(\sqrt{11+19}\)
\(=\)\(\sqrt{30}\)
\(=\)\(5,47\)
\(\sqrt{47}\)
\(=6,85\)
\(5,47\)\(< \)\(6,85\)
\(=>\)\(\sqrt{11}+\sqrt{19}\)\(< \)\(\sqrt{47}\)
\(b\)
\(\sqrt{7}+\sqrt{26}+1\)
\(=\)\(\sqrt{7+26}+1\)
\(=\)\(\sqrt{33}+1\)
\(=\)\(5,74+1\)
\(=\)\(6,74\)
\(\sqrt{63}\)
\(=\)\(7,93\)
\(6,74\)\(< \)\(7,93\)
\(=>\)\(\sqrt{7}+\sqrt{26}+1\)\(< \)\(\sqrt{63}\)
Học tốt!!!
a, Ta có : \(36< 41\)
=> \(\sqrt{36}=6< \sqrt{41}\)
b, Ta có : \(49>47\)
=> \(\sqrt{49}=7>\sqrt{47}\)
c, Ta có : \(2>1\)
=> \(\sqrt{2}>\sqrt{1}=1\)
=> \(\sqrt{2}+3>1+3=4\)
d, Ta có : \(20>16\)
=> \(\sqrt{20}=2\sqrt{5}>\sqrt{16}=4\)
e, Ta có : \(45>36\)
=> \(\sqrt{45}=3\sqrt{5}>\sqrt{36}=6\)
=> \(-3\sqrt{5}< -6\)
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
\(2=\sqrt{4}>\sqrt{3}\)
\(6=\sqrt{36}< \sqrt{41}\)
\(7=\sqrt{49}>\sqrt{47}\)