Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2\sqrt{6}=\sqrt{24}\)
\(3\sqrt{3}=\sqrt{27}\)
mà 24<27
nên \(2\sqrt{6}< 3\sqrt{3}\)
b: \(\dfrac{2}{5}\sqrt{6}=\sqrt{\dfrac{4}{25}\cdot6}=\sqrt{\dfrac{24}{25}}\)
\(\dfrac{7}{4}\sqrt{\dfrac{1}{3}}=\sqrt{\dfrac{49}{16}\cdot\dfrac{1}{3}}=\sqrt{\dfrac{49}{48}}\)
mà 24/25<1<49/48
nên \(\dfrac{2}{5}\sqrt{6}< \dfrac{7}{4}\sqrt{\dfrac{1}{3}}\)
√ 8+√ 5 vs √ 7+√ 6
bình phuong 2 ve' ta dc
8+2√40+5 vs 7+2√ 42+6
<=>13+2√ 40 vs 13+2√ 42
do √ 40< √ 42 nen suy ra
√ 8+√ 5<√ 7+√ 6
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau
a) \(\sqrt[3]{7+5\sqrt{2}}=\sqrt{2}+1\)
b) \(-6\sqrt[3]{7}=\sqrt[3]{\left(-6\right)^3\cdot7}=\sqrt[3]{-1512}\)
\(7\sqrt[3]{-6}=\sqrt[3]{7^3\cdot\left(-6\right)}=\sqrt[3]{-2058}\)
mà -1512>-2058
nên \(-6\sqrt[3]{7}>7\cdot\sqrt[3]{-6}\)
\(\left(\sqrt{4+\sqrt{5+\sqrt{6}}}\right)^2=4+\sqrt{5+\sqrt{6}};3^2=9=4+5\left(1\right)\\ \left(\sqrt{5+\sqrt{6}}\right)^2=5+\sqrt{6};5^2=25=5+20\left(2\right)\\ \left(\sqrt{6}\right)^2=6;20^2=400\\ \Leftrightarrow\sqrt{6}< 20\)
Thay vào \(\left(2\right)\Leftrightarrow\sqrt{5+\sqrt{6}}< 5\)
Thay vào \(\left(1\right)\Leftrightarrow\sqrt{4+\sqrt{5+\sqrt{6}}}< 3\)
\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)
\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)
So sánh: √6-√5 với √7-√6
√6-√5 = 0,213 (xấp xỉ)
√7-√6 = 0,196 (xấp xỉ)
=> ta có √6-√5 > √7-√6