Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)
\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)
\(\sqrt{6+\sqrt{6+\sqrt{6}}}+\sqrt{2+\sqrt{2+\sqrt{2}}}\)
\(< \sqrt{6+\sqrt{6+\sqrt{9}}}+\sqrt{2+\sqrt{2+\sqrt{4}}}=3+2=5\)
\(a,\left(\sqrt{\sqrt{3}}\right)^4=3< 4=\left(\sqrt{2}\right)^4\Rightarrow\sqrt{\sqrt{3}}< \sqrt{2}\\ b,\left(\sqrt{2\sqrt{3}}\right)^4=12< 18=\left(\sqrt{3\sqrt{2}}\right)^4\Rightarrow\sqrt{2\sqrt{3}}=\sqrt{3\sqrt{2}}\\ c,\left(2+\sqrt{6}\right)^2=8+4\sqrt{6};5^2=25=8+17;\left(4\sqrt{6}\right)^2=96< 289=17^2\\ \Rightarrow4\sqrt{6}< 17\Rightarrow2+\sqrt{6}< 5\\ d,\left(7-2\sqrt{2}\right)^2=57-28\sqrt{2};4^2=16=57-41;\left(28\sqrt{2}\right)^2=1568< 41^2=1681\\ \Rightarrow28\sqrt{2}< 41\Rightarrow7-2\sqrt{2}>4\\ e,\left(\sqrt{15}+\sqrt{8}\right)^2=23+4\sqrt{30};7^2=49=23+26;\left(4\sqrt{30}\right)^2=240< 676=26^2\\ \Rightarrow4\sqrt{30}< 26\Rightarrow\sqrt{15}+\sqrt{8}< 7\)
\(f,\left(\sqrt{37}-\sqrt{14}\right)^2=51-2\sqrt{518};\left(6-\sqrt{15}\right)^2=51-12\sqrt{15};\left(2\sqrt{518}\right)^2=2072;\left(12\sqrt{15}\right)^2=2160\\ \Rightarrow2\sqrt{518}< 12\sqrt{15}\Rightarrow\sqrt{37}-\sqrt{14}>6-\sqrt{15}\)
Ta có:
\(a.\)Ta có:
\(7>4\) nên \(\sqrt{7}>\sqrt{4}\)
\(\Rightarrow\) \(\sqrt{7}>2\) \(\left(1\right)\)
và \(5>4\) nên \(\sqrt{5}>\sqrt{4}\)
\(\Rightarrow\) \(\sqrt{5}>2\) \(\left(2\right)\)
Mặt khác, ta lại có: \(\sqrt{12}< \sqrt{16}=4\) \(\left(i\right)\)
Do đó, từ hai bđt \(\left(1\right)\) và \(\left(2\right)\) , kết hợp với chú ý \(\left(i\right)\) ta suy ra được:
\(\sqrt{7}+\sqrt{5}>\sqrt{12}\)
a) \(1=\sqrt{1}< \sqrt{2}\)
b) \(2=\sqrt{4}>\sqrt{3}\)
c) \(6=\sqrt{36}< \sqrt{41}\)
d) \(7=\sqrt{49}>\sqrt{47}\)
e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)
f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)
g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)
h) \(\sqrt{3}>0>-\sqrt{12}\)
i) \(5=\sqrt{25}< \sqrt{29}\)
\(\Rightarrow-5>-\sqrt{29}\)
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau
√ 8+√ 5 vs √ 7+√ 6
bình phuong 2 ve' ta dc
8+2√40+5 vs 7+2√ 42+6
<=>13+2√ 40 vs 13+2√ 42
do √ 40< √ 42 nen suy ra
√ 8+√ 5<√ 7+√ 6
chim to vai lon