Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: `8^111 =(2^3 )^111 =2^(3.111)=2^333`
`4^170 =(2^2 )^170 =2^(2.170)=2^340`
Vì `333<340=>8^111 <4^170`
Ta có: `3^300 =3^(3.100)=(3^3 )^100=27^100`
`5^200 =5^(2.100)=(5^2 )^100 =25^100`
Vì `27>25=>3^300 >5^200`
a: 8^111=2^333
4^170=(2^2)^170=2^340
mà 333<340
nên 8^111<4^170
b: 3^300=(3^3)^100=27^100
(5^200)=(5^2)^100=25^100
mà 27>25
nên 3^300>5^200
\(B=3+3^2+3^3+...+3^{300}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{298}+3^{299}+3^{300}\right)\)
\(B=\left(3+3^2+3^3\right)+3^3\cdot\left(3+3^2+3^3\right)+...+3^{297}\cdot\left(3+3^2+3^3\right)\)
\(B=39+3^3\cdot39+...+3^{297}\cdot39\)
\(B=39\cdot\left(1+3^3+...+3^{297}\right)\)
Vậy B chia hết cho 39
(3+X)+(6+X)+(9+X)+…+(99+X)=3300
(3+6+9+…+99)+(X+X+X+…+X)=3300
A
Số số hạng dãy A là: (99-3):3+1=33
A=(99+3)x33:2=(99+3):2x33=51x33
51x33+33xX=3300
33x(51+X)=3300
51+X=3300:33
51+X=100
X=100-51
X=49
\(B=3^1+3^2+3^3+...+3^{300}\\=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{299}+3^{300})\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+...+3^{299}\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{299}\cdot4\\=4\cdot(3+3^3+3^5+...+3^{299})\)
Vì \(4\cdot(3+3^3+3^5+...+3^{299})\vdots2\)
nên \(B\vdots2\)
B=(3+32)+(33+34)+...+(3299+3300)
B=3(1+3)+33(1+3)+...+3299(1+3)
B=3.4+33.4+...+3299.4
B=4(3+33+...+3299) chia hết cho 2 vì 4 chia hết cho 2
vậy B chia hết cho 2
a>ƯCLN
1230=2.3.5.41
4800=26.3.52
ƯC{1230;4800}=2.3=6={1;2;3;6}
=>ƯCLN{1230;4800}=6
Ta có: \(x+2x+3x+4x+...+100x+50=5200\)
\(\Leftrightarrow x\left(1+2+3+4+...+100\right)=5150\)
\(\Leftrightarrow x\cdot\frac{\left(1+100\right)\cdot\left[\left(100-1\right)\div1+1\right]}{2}=5150\)
\(\Leftrightarrow x\cdot5050=5150\)
\(\Rightarrow x=\frac{103}{101}\)
x+x.2+x.3+...+x.100+50=5200
x.(1+2+3+..+100)+50=5200
Có 1+2+3+...+100=(100+1).100:2=5050
suy ra x.(1+2+3+...+100)+50=x.5050+50=5200
x=5150:5050=\(103\over 101\)