Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}=\left(2^3\right)^{100}=2^{300}\)
Vậy \(3^{200}>2^{300}\)
b.
\(5^{200}=\left(5^2\right)^{100}=25^{100}< 32^{100}=\left(2^5\right)^{100}=2^{500}\)
Vậy \(5^{200}< 2^{500}\)
Ta có : \(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(\Rightarrow9^{100}>8^{100}\)
\(\Rightarrow3^{200}>2^{300}\)
So sánh 5200 và 3300
5200 = 5100 x 5100 = ( 5x5)100 = 25100
3300= 3100 x 3100 x 3100 = (3x3x3)100 = 27100
Vì 27 > 25 \(\Rightarrow\)25100 < 27100 hay 5200 < 3300
5200 = (52)100 = 25100
3300 = (33)100 = 27100
vì: 27100 > 25100
=> 5200 < 3300
\(A=3^{300}=\left(3^3\right)^{100}=27^{100}\)
\(B=5^{200}=\left(5^2\right)^{100}=25^{100}\)
Vì 27 > 25 => 3300 > 5100 hay A > B
\(a,\)\(\text{Ta có: }\) \(3^{200}=\left(3^2\right)^{100}=9^{100}\left(1\right)\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\left(2\right)\)
\(\text{Từ (1) và (2) }\)\(\Rightarrow3^{200}>2^{300}\)
a, 3^200= (3^2)^100= 9^100
2^300= (2^3)^100= 8^100
Vì 9^100>8^100 nên 3^200>2^300
b, 125^5= (5^3)^5= 5^15
25^7= (5^2)^7= 5^14
Vì 5^15>5^14 nên 125^5>25^7
3200 VÀ 2300
3200 = ( 32)100 = 9100
2300 = ( 23)100 = 8100
MÀ 9100> 8100
NÊN 3200> 2300
thê này à mn
Ta có: 300200=(3.100)200=3200.100200=32.100.102.100=(32)100.1002.100100=9100.1002.100100
200300=(2.100)300=2300.100300=23.100.103.100=(23)100.1002+1.100100=8100.100.1002.100100
Ta thấy:82.100=82.102=802<81=92
=>82.100<92
Mà 898<998
=>82.100.898<92.998
=>8100.100<9100
=>8100.100.1002.100100<9100.1002.100100
=>200300<300200
ta có :
2300=(23)100=8100
3200=(32)100=9100
vì 8100<9100 nên 2300<3200
tick cái bạn
5^200 > 3^300
chắc là 5 > 3