Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ làm được phần f) thui
f) Ta có :
\(\left(-\frac{1}{16}\right)^{100}=\left(-\frac{1}{2^4}\right)^{100}=\left(-\frac{1}{2}\right)^{400}=\left(\frac{1}{-2}\right)^{400}\)
\(\left(-\frac{1}{2}\right)^{500}=\left(\frac{1}{-2}\right)^{500}\)
Vì \(\left(\frac{1}{-2}\right)^{400}>\left(\frac{1}{-2}\right)^{500}\)nên \(\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
Ủng hộ mk nha !!! ^_^
a) \(2^{30}+3^{30}+4^{30}=4^{15}+27^{10}+64^{10}>4^{15}+24^{10}+2.24^{10}>3.24^{10}\)
b) \(3^{21}=3.9^{10}>3.8^{10}>2.8^{10}=2^{31}\)
1024+3486784401+1.152921505.\(10^{18}\)và 3.6.340338097.\(10^{13}\)
1.152921508.\(10^{18}\) , 1.902101429.\(10^{14}\)
v
Chúc bạn hoc giỏi
Ta có :
\(3.24^{10}=3.\left(2^3.3\right)^{10}=3^{11}.2^{30}=3^{11}.4^{15}< 4^{15}.4^{15}=4^{30}\)
\(\Rightarrow2^{10}+3^{20}+4^{30}>3.24^{10}\)
Vậy \(2^{10}+3^{20}+4^{30}>3.24^{10}\)
_Chúc bạn học tốt_
a,2^30=(2^3)^10,3^20=(3^2)^10
2^30=8^10,3^20=9^10
vì 8<9=>8^10<9^10
=>2^30<3^20
b,9999=(99^101)^20
vì 20<2020=>9999^10>99^20
c(0,8)^3=(0.4^2)^3
vì 4<6 =>(0,4)^4<(0,8)^3
chúc em học tốt nhé ^-^
a) 230 và 320
230= 10 chữ số 23 \(\hept{ }\)2.2.2.2.2.2.2.2.2..........2= 23.10
( 23 ) 10= 8 10
320 = 10 chữ số 32 \(\hept{ }\)3.3.3.3........3= 32.10
( 32) 10= 9 10
Vì 8 < 9 nên 230 < 320.
b) 9920 và 999910
9920= 10 chữ số 992 \(\hept{ }\)99.99.99.99.....99= 992.10
(992)10= 9801 10
Lưu ý :vì số 99 20 được kết quả là 9801 10 mà 999910 cùng số mũ nên ta không cần phải tính nữa !
Vì 9801 < 9999 nên 9920 < 999910
Câu c cũng rất dễ bạn dựa vào cách mình làm ở câu a và b để giải câu c nha !
Thấy đúng mà dễ hiểu thì k cho mình nha !
10^30=(10^3)^10=1000^10
2^100=(2^10)^10=1024^10
=>10^30<2^100
vậy.....
5^40=(5^4)^10=625^10
=>5^40>620^10
\(a,\) Ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)
\(b,\)Ta có : \(5^{40}=\left(5^4\right)^{10}=625^{10}\)
Vì \(625^{10}>620^{10}\Rightarrow5^{40}>620^{10}\)
ta co: 3300 =(33)100 =27100
4300=(43)100=64100
Vi 3.24<27<64 nen 3.24100<3300<4300
\(4^{30}=2^{2.30}=2^{30}.2^{30}=4^{15}.2^{30}\)
\(3.24^{10}=3.3^{10}.2^{30}=3^{11}.2^{30}\)
=> \(4^{30}>3.24^{10}\)