Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này cũng không dài mìn nghĩ bạn nên làm tất cho đầy đủ chứ làm 1 phần như nayd quá ngắn
\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)
\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)
\(2\sqrt{3}=\sqrt{2^2.3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{3^2.2}=\sqrt{18}\)
--> \(2\sqrt{3}< 3\sqrt{2}\)
.-.còn cách giải nào dễ hiểu hơn nữa không đọc xong mù luôn cả chữ
Đặt:
\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)
\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\right)\)
\(A=\dfrac{1}{\sqrt{2}}\left(\left|1+\sqrt{5}\right|+\left|\sqrt{5}-1\right|\right)\)
\(A=\dfrac{1}{\sqrt{2}}\left(1+\sqrt{5}+\sqrt{5}-1\right)\)
\(A=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
Ta có: \(A^2=\left(\sqrt{10}\right)^2=10\)
\(B=\left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
Mà: \(4\sqrt{5}>1\)
Nên: \(A^2< B^2\)
\(\Rightarrow A< B\)
Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}+1+\sqrt{5}-1\right)=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
=>A^2=(căn 10)^2=10=9+1
Đặt B=2+căn 5
=>B^2=(2+căn 5)^2=9+4căn 5
1<4căn 5
=>9+1<9+4căn 5
=>A^2<B^2
=>A<B
a: \(1< \sqrt{2}\)
nên \(2< \sqrt{2}+1\)
b: \(2\sqrt{31}=\sqrt{124}\)
\(10=\sqrt{100}\)
mà 124>100
nên \(2\sqrt{31}>10\)
c: \(-3\sqrt{11}=-\sqrt{99}\)
\(-\sqrt{12}=-\sqrt{12}\)
mà 99>12
nên \(-3\sqrt{11}< -\sqrt{12}\)
a)
Có: \(2>1>0\)
\(\Rightarrow\sqrt{2}>1\Rightarrow1+\sqrt{2}>1+1\\ \Leftrightarrow1+\sqrt{2}>2\)
b) Có: \(0< \sqrt{3}< 3\)
\(\Rightarrow3+1>\sqrt{3}+1\\ \Rightarrow4>\sqrt{3}+1\)
c) Có: \(0< \sqrt{11}< \sqrt{25}\left(0< 11< 25\right)\)
\(\Rightarrow\sqrt{11}< 5\\ \Rightarrow-2\sqrt{11}>-2.5=-10\left(-2< 0\right)\)
d) Có: \(0< \sqrt{11}< \sqrt{16}=4\left(do.0< 11< 16\right)\)
\(\Rightarrow3\sqrt{11}< 3.4\\ \Leftrightarrow3\sqrt{11}< 12\)
a: 2=1+1<1+căn 2
b: 4=1+3>1+căn 3
c: -2căn 11=-căn 44
-10=-căn 100
mà 44<100
nên -2 căn 11>-10
d: 12=3*4=3*căn 16>3*căn 11
Bình phương hai vế liên tiếp ta có \(\sqrt{3\sqrt{2}}=3\sqrt{2}=\sqrt{18}=18\)
\(\sqrt{2\sqrt{3}}=2\sqrt{3}=\sqrt{12}=12\)
\(\rightarrow18>15\)
Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)