Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3^200 và 2^300
ta có:3^200=3^2x100=(3^2)^100=9^100
2^300=2^3x100=(2^3)^100=8^100
vì 9>8 =>9^100>8^100
=>3^200>2^200
vậy...
b)125^5 và 25^7
ta có:125^5=(5^3)^5=5^15
25^7=(5^2)^7=5^14
vì 15>14 =>5^15>5^14
=>125^5>25^7
vậy.....
c)9^20 và 27^13
ta có:9^20=(3^2)^20=3^40
27^13=(3^3)^13=3^39
vì 40>39 => 3^40>3^39
=>9^20>27^13
vậy....
d)3^54 và 2^81
ta có:3^54=3^6x9=(3^6)^9=729^9
2^81=2^9x9=(2^9)^9=512^9
vì 729>512 =>729^9>512^9
=> 3^54>2^81
vậy.....
e)10^30 và 2^100
ta có: 10^30=10^3x10=(10^3)^10=1000^10
2^100=2^10x10=(2^10)^10=1024^10
vì 1000<1024 =>1000^10<1024^10
=> 10^30<2^100
vậy....
f)5^40 và 620^10
ta có:5^40=5^4x10=(5^4)^10=625^10
vì 625>620 =>625^10>620^10
=>5^40>620^10
vậy....
ĐÓ LÀ CÁCH LÀM CỦA TỚ NẾU THẤY ĐÚNG THÌ K NHA.
a) 3^200 = (3^2)^100 = 9^100
2^300 = (2^3)^100 = 8 ^100
Do 9>8 =>9^100 > 8^100=> 3^200> 2^300
b) 125^5 = (5^3)5 = 5^15
25^7 = ( 5^2)^7 = 5^14
Do 5^15 > 5^14 => 125^5 > 25^7
536 = (56)6 = 156256
1124 = (114)6 = 146416
vậy 536 > 1124
536 = 53.12 = ( 53 )12 = 12512
1124 = 112.12 = ( 112 )12 = 12112
Vì 12512 > 12112 nên 536 > 1124
Ta có
\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
Vì \(3^{32}< 3^{33}\Rightarrow81^8< 27^{11}\)
Ta có:
2711=(33)11=333
818=(34)8=332
\(\Rightarrow\)2711>818
Vậy 2711>818
a, \(\frac{67}{77}=1-\frac{10}{77};\frac{73}{83}=1-\frac{10}{83}\)
Vì \(\frac{10}{77}>\frac{10}{83}\Rightarrow1-\frac{10}{77}< 1-\frac{10}{83}\)
Vậy \(\frac{67}{77}< \frac{73}{83}\)
Câu b tương tự nhé
1-67/77=10/77
1-73/83=10/83
có 10/77 >10/83 nên 67/77 < 73/83
vậy 67/77 < 73/83
b ,11/82 và 16/49
11/82 <11/49 <16/49
suy ra 11/82 <16/49
a)\(9^{12}=\left(3^2\right)^{12}=3^{24}\)
\(27^7=\left(3^3\right)^7=3^{21}\)
\(\Rightarrow9^{12}>27^7\)
a) bạn Mạnh làm rồi và đúng
b) Ta có : \(333^{444}=\left(333^4\right)^{111}=\left[\left(3.111\right)^4\right]^{111}=\left[\left(3^4.111^4\right)\right]^{111}=\left(84.111^4\right)^{111}\)
\(444^{333}=\left(444^3\right)^{111}=\left[\left(4.111\right)^3\right]^{111}=\left[\left(4^3.111^3\right)\right]^{111}=\left(64.111^3\right)^{111}\)
Ta thấy (84.1114)111 > ( 64.1113)111 => 333444 > 444333
Vậy...
c) Vì \(17^{2002}+1>17^{2001}+1\)
\(\Rightarrow\frac{17^{2001}+1}{17^{2002}+1}< \frac{17^{2001}+1}{17^{2001}+1}\)
a) \(\frac{2}{3}=\frac{8}{12}\) ; \(\frac{1}{4}=\frac{3}{12}\)
mà 8 > 3 ⇒ \(\frac{8}{12}>\frac{3}{12}\)⇒\(\frac{2}{3}>\frac{1}{4}\)
b) \(\frac{7}{10}\) và \(\frac{7}{8}\); mà 10 > 8 ⇒ \(\frac{7}{10}< \frac{7}{8}\)
c) \(\frac{6}{7}=\frac{30}{35}\); \(\frac{3}{5}=\frac{21}{35}\)
mà 30 > 21 ⇒ \(\frac{30}{35}>\frac{21}{35}\)⇒\(\frac{6}{7}>\frac{3}{5}\)
d) \(\frac{14}{21}=\frac{2}{3}\); \(\frac{60}{72}=\frac{5}{6}\)
\(\frac{2}{3}=\frac{4}{6}\) ⇒ \(\frac{2}{3}< \frac{5}{6}\)⇒ \(\frac{14}{21}< \frac{60}{72}\)
e) \(\frac{38}{133}=\frac{2}{7}\); \(\frac{129}{344}=\frac{3}{8}\)
\(\frac{2}{7}=\frac{16}{56}\) ; \(\frac{3}{8}=\frac{21}{56}\) mà 16<21 ⇒ \(\frac{16}{56}< \frac{21}{56}\)⇒ \(\frac{38}{133}< \frac{129}{344}\)
f) \(\frac{11}{54}=\frac{22}{108}\)và \(\frac{22}{37}\) mà 108 > 37 ⇒ \(\frac{22}{108}< \frac{22}{37}\)⇒ \(\frac{11}{54}< \frac{22}{37}\)
Ta có : 31 ^11 <32^11= (2^5)^11=2^55
17^14 > 16^14 = (2^4 ) ^14=2^ 56
Vì 31^11 <2^55< 2^56 < 17^14
Nên 31^ 11<17^14
3111< 3211=(25)11 =255
1714 >1614= (24)14=256
\(\Rightarrow\)3111<255 <256 <1714
\(27^{11}=\left(3^3\right)^{11}=3^{33};81^8=\left(3^4\right)^8=3^{32}\)
Vì \(33>32\Rightarrow27^{11}>81^8\)
Vậy 2711>818
Ta có: \(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
Vì \(3^{33}>3^{32}\) nên \(27^{11}>81^8\)