K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6

Ta có: \(-\dfrac{2}{3}< 0\)\(\dfrac{1}{200}>0\)

\(\Rightarrow-\dfrac{2}{3}< \dfrac{1}{200}\)

DT
17 tháng 6

Đề bài là gì bạn nhỉ?

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

9 tháng 10 2021

TC:(1/2)^300=(1/8)^100

     (1/3)^200=(1/9)^100

     Vì (1/8)^100>(1/9)^100  =>(1/2)^300 >(1/3)^200

7 tháng 12 2019

Ta có: \(A=1+3^1+3^2+3^3+...+3^{199}+3^{200}\)

\(\Rightarrow3A=3^1+3^2+3^3+3^4+...+3^{201}\)

\(\Rightarrow3A-A=\left(3^1+3^2+3^3+3^4+...+3^{201}\right)-\left(1+3^1+3^2+3^3+...+3^{200}\right)\)

\(\Rightarrow2A=3^{201}-1\)

\(\Rightarrow A=\frac{3^{201}-1}{2}< 3^{201}-1< 3^{201}=B\)

Vậy A < B

7 tháng 12 2019

Ta có : A = 1 + 3 + 3+ ... + 3200

\(\Leftrightarrow\)2A = 3 + 3+ 33 + ... + 3201

Lấy 2A - A = ( 3 + 32 + 33 + ... + 3201 ) - ( 1 + 3 + 3+ ... + 3200 )

\(\Rightarrow\)A = 3201 - 1

Ta thấy : 3201 - 1 < 3201

\(\Leftrightarrow\)A < B

16 tháng 11 2021

2300<3200

16 tháng 11 2021

\(2^{300}=\left(2^3\right)^{100}=8^{100}< 9^{100}=\left(3^2\right)^{100}=3^{200}\)

26 tháng 11 2021

\(2\)\(^{202}\)\(3\)\(^{200}\)

26 tháng 11 2021

ghi cách giải

4 tháng 11 2016

\(2^{200}< 3^{200}vi2< 3\)

chúc bnm học gioi!

nhae@@@

hihikudo shinichi

4 tháng 11 2016

Vì 2 < 3 => 2200< 3200

26 tháng 4 2016

ta có :

2300=(23)100=8100

3200=(32)100=9100

vì 8100<9100 nên 2300<3200

\(2^{300}=\left(2^3\right)^{100}\) \(\Rightarrow8^{100}\)

\(3^{200}=\left(3^2\right)^{100}\) \(\Rightarrow9^{100}\)

\(\Rightarrow8^{100}<9^{100}\)\(\Leftrightarrow2^{300}<3^{200}\)

30 tháng 10 2015

2^150=(2^3)^50=8^50

3^200=(3^4)^50=81^50

Vì 81^50>8^50nên 3^200>2^150