K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

2017/2016-1=2017/2017-2016/2017=1/2017

2016/2015-1=2016/2016-2015/2016=1/2016

Vì 1/2017<1/2016nên 2017/2016<2016/2015

6 tháng 9 2016

Ta có : 

1 - 2017 /2016 = 1/2016 

1 -  2016/2015 = 1/2015 

Vì 1/2015 > 1/2016 

nên ..............

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

a)\(\frac{2016}{2017}< 1;\frac{2015}{2016}< 1\)

b)\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)

=> \(\frac{2016}{2017}\)và    

\(\frac{2016}{2017}< 1;\frac{2016}{2015}< 1\)

\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)

=> \(\frac{2016}{2017}\)và    \(\frac{2015}{2016}\)<    \(\frac{2017}{2016}\)và    \(\frac{2016}{2015}\)

21 tháng 9 2017

Ta có :

\(x=\frac{2016^{2017}+1}{2016^{2016}+1}\)

\(\frac{1}{2016}x=\frac{2016^{2017}+1}{2016^{2017}+2016}=\frac{2016^{2017}+2016-2015}{2016^{2017}+2016}\)

\(\Rightarrow\frac{1}{2006}x=1-\frac{2015}{2016^{2017}+2016}\)

Ta lại có :

\(y=\frac{2016^{2016}+1}{2016^{2015}+1}\)

\(\Rightarrow\frac{1}{2016}y=\frac{2016^{2016}+1}{2016^{2016}+2016}=\frac{2016^{2016}+2016-2015}{2016^{2016}+2016}\)

\(\Rightarrow\frac{1}{2016}y=1-\frac{2015}{2016^{2016}+2016}\)

Mà \(\frac{2015}{2016^{2017}+2016}< \frac{2015}{2016^{2016}+2016}\)(so sánh mẫu)

\(\Rightarrow1-\frac{2015}{2016^{2017}+2016}>1-\frac{2015}{2016^{2016}+2016}\)

\(\Rightarrow\frac{1}{2016}x>\frac{1}{2016}y\)

\(\Rightarrow x>y\)

DÀI QUÁ KHÔNG TÍNH ĐƯỢC. CÁI NÀY CÓ MÀ ĐI HỎI THẦN ĐỒNG VỀ MÔN TOÁN ĐI

4 tháng 2 2019

Ta có: 1042015 + 2 < 1042016 + 2.

=> A = \(\frac{104^{2015}+2}{104^{2016}+2}\)< 1 (1).

Ta có: 1042016 + 2 > 10420 + 2 > 10420.

=> B = \(\frac{104^{2016}+2}{104^{20}}\) > 1 (2).

Từ (1) và (2) => A < 1 < B => A < B.

Chúc bạn học tốt nhé!

4 tháng 2 2019

bạn ơi giúp mình sửa mẫu của B thành 104^2017+2 nhé

Thanks bạn nhìu

26 tháng 9 2016

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

23 tháng 9 2016

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)

6 tháng 5 2016

Không cần giải cũng biết đáp án:

Nếu A là số dương thì A^2016>A^2015

Nếu A là số âm thì A^2016 là số dương , A^2015 là số âm nên chắc chắn A^2016>A^2015

k nha