K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)

\(\dfrac{154}{155}>\dfrac{154}{155+156}\)

\(\dfrac{155}{156}>\dfrac{155}{155+156}\)

=>154/155+155/156>(154+155)/(155+156)

=>A>B

b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)

2021/2022>2021/6069

2022/2023>2022/2069

2023/2024>2023/6069

=>D>C

2 tháng 5 2022

sửa rồi đó ạ

 

29 tháng 10 2023

Ta có:

\(2023^{2022}=2023\cdot2023^{2021}\)

\(2022^{2022}+2022^{2021}=2022^{2021}\cdot\left(2022+1\right)=2023\cdot2022^{2021}\)

Mà: \(2023>2022\)

\(\Rightarrow2023^{2021}>2022^{2021}\)

\(\Rightarrow2023^{2021}\cdot2023>2022^{2021}\cdot2023\)

\(\Rightarrow2023^{2022}>2022^{2022}+2022^{2021}\) 

Vậy: ... 

3 tháng 5 2023

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C 

 

6 tháng 11 2021

\(-\dfrac{2021}{2022}< \dfrac{2022}{2023}\)

6 tháng 11 2021

\(\dfrac{-2021}{2022}< 0;\dfrac{2022}{2023}>0\Rightarrow\dfrac{-2021}{2022}< \dfrac{2022}{2023}\)

2020/2021<1

2021/2022<1

2022/2023<1

2023/2020=1+1/2020+1/2020+1/2020>1+1/2021+1/2022+1/2023

=>B>2020/2021+2021/2022+2022/2023+1/2021+1/2022+1/2023+1=4

\(10A=\dfrac{10^{2023}+10}{10^{2023}+1}=1+\dfrac{9}{10^{2023}+1}\)

\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

mà 10^2023+1>10^2022+1

nên A<B

25 tháng 4 2022

=)

25 tháng 4 2022

Help me