Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 3223>3222=(32)111=9111(1)
2332<2333=(23)111=8111(2)
Từ (1);(2)
=> 3223>2332
2225 = (23)75 = 875
3151 > 3150 = (32)75 = 975
=> 3151 > 975 > 875
=> 3151 > 2225
4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2.(2n - 1) - 3 chia hết cho 2n - 1
Do 2.(2n - 1) chia hết cho 2n - 1 => 3 chia hết cho 2n - 1
Mà n thuộc N => 2n - 1 > hoặc = -1
=> 2n - 1 thuộc {-1 ; 1 ; 3}
=> 2n thuộc {0 ; 2 ; 4}
=> n thuộc {0 ; 1 ; 2}
\(A=2+2^2+2^3+...+2^{2021}\\ \Leftrightarrow2A=2^2+2^3+2^4+...+2^{2022}\\ \Leftrightarrow2A-A=\left(2^2+2^3+2^4+...+2^{2022}\right)-\left(2+2^2+2^3+...+2^{2021}\right)\\ \Leftrightarrow A=2^{2022}-2\\ 2^{2022}-2< 2^{2022}\Rightarrow A< B\)
Ta có:
\(2^6=\left(2^3\right)^2=8^2\)\(=64\)
\(6^2=36\)
Vì \(8^2>6^2\)
⇒\(2^6>6^2\)
\(a,2^6=64\)
\(6^2=36\)
Vì \(64>36\) ⇒ \(2^6>6^2\)
\(b,3^4=81\)
\(4^3=64\)
Vì \(81>64\) ⇒ \(3^4>4^3\)
\(c,5^4=625\)
\(4^5=1024\)
Vì \(625< 1024\) ⇒ \(5^4< 4^5\)
(22)3 và 26
(22)3 = 22.3 = 26
Vậy (22)3 = 26
\(\left(2^2\right)^3\) và \(2^6\)
- \(\left(2^2\right)^3=64\)
- \(2^6=64\)
Vì \(64=64\)
Nên \(\left(2^2\right)^3=2^6\)
Ta có:2332<2333= (23)111 =8111
3223>3222= (32)111 =9111
Vì 8111<9111nên
2332<8111<9111<3223 => 2332< 3223
Vậy 2332< 3223 .