\(A=\dfrac{10^{10}+1}{10^{10}-1}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Ta có: \(A=\dfrac{10^{10}+1}{10^{10}-1}=\dfrac{10^{10}-1+2}{10^{10}-1}=1+\dfrac{2}{10^{10}-1}\)

\(B=\dfrac{10^{10}-1}{10^{10}-3}=\dfrac{10^{10}-3+2}{10^{10}-3}=1+\dfrac{2}{10^{10}-3}\)

\(\dfrac{2}{10^{10}-1}< \dfrac{2}{10^{10}-3}\Rightarrow1+\dfrac{2}{10^{10}-1}< 1+\dfrac{2}{10^{10}-3}\)

\(\Rightarrow A< B\)

Vậy A < B

21 tháng 4 2017

\(A=\dfrac{10^{10}+1}{10^{10}-1}=\dfrac{10^{10}-1+2}{10^{10}-1}=1+\dfrac{2}{10^{10}-1}\)

\(B=\dfrac{10^{10}-1}{10^{10}-3}=\dfrac{10^{10}-3+2}{10^{10}-3}=1+\dfrac{2}{10^{10}-3}\)

\(10^{10}-1>10^{10}-3\) nên ta có

\(\dfrac{2}{10^{10}-1}< \dfrac{2}{10^{10}-3}\)

Vậy \(A< B\)

13 tháng 3 2018

a,A<B

b,A,<B

c,A<B

13 tháng 3 2018

a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)

c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:

 \(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

Vậy A < B

b: \(B=2013+\dfrac{2013}{3}+\dfrac{2013}{6}+\dfrac{2013}{10}+\dfrac{2013}{15}\)

\(=2013\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}\right)\)

\(=4026\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)

\(=4026\cdot\dfrac{5}{6}=3355\)

1 tháng 4 2017

a, Ta có : \(10^{15}\cdot11=10^{15}\left(10+1\right)=10^{16}+10^{15}\)

\(10^{16}+10^{15}>10^{16}+10\)

\(\Rightarrow\dfrac{10^{16}+10^{15}}{10^{16}+1}>\dfrac{10^{16}+10}{10^{16}+1}\)

Hay A>B

b, Ta có : \(C=\dfrac{10^{10}+1}{10^{10}-1}=\dfrac{10^{10}}{10^{10}-1}+\dfrac{1}{10^{10}-1}\)

\(D=\dfrac{10^{10}-1}{10^{13}-3}=\dfrac{10^{10}}{10^{13}-3}+\dfrac{-1}{10^{13}-3}\)

\(\dfrac{10^{10}}{10^{10}-1}>\dfrac{10^{10}}{10^{13}-3};\dfrac{1}{10^{10}-1}>\dfrac{-1}{10^{13}-3}\)

\(\Rightarrow\dfrac{10^{10}+1}{10^{10}-1}>\dfrac{10^{10}-1}{10^{13}-3}\)

Hay C > D

30 tháng 3 2017

Cách 2:

Ta có: \(10A=\dfrac{10^{2008}+10}{10^{2008}+1}=1+\dfrac{9}{10^{2008}+1}\)

\(10B=\dfrac{10^{2009}+10}{10^{2009}+1}=1+\dfrac{9}{10^{2009}+1}\)

\(\dfrac{9}{10^{2008}+1}>\dfrac{9}{10^{2009}+1}\Rightarrow1+\dfrac{9}{10^{2008}+1}>1+\dfrac{9}{10^{2009}+1}\)

\(\Rightarrow10A>10B\Rightarrow A>B\)

Vậy A > B

b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)

\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)

mà \(10^7-8< 10^8-7\)

nên A>B

c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)

\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)

mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)

nên A<B

30 tháng 3 2017

Ta có :

\(A=\dfrac{10^{10}+1}{10^{10}-1}=\dfrac{10^{10}-1+1+1}{10^{10}-1}=\dfrac{\left(10^{10}-1\right)+1}{10^{10}-1}=1+\dfrac{2}{2016^{10}-1}\) \(\left(1\right)\)

\(B=\dfrac{10^{10}-1}{10^{10}-3}=\dfrac{10^{10}-3-1+3}{10^{10}-3}=\dfrac{\left(10^{10}-3\right)+2}{10^{10}-3}=1+\dfrac{2}{10^{10}-3}\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\) \(\Rightarrow\) \(A< B\)

Chúc bn học tốt!!

30 tháng 3 2017

Ta có A=\(\dfrac{10^{10}+1}{10^{10}-1}=\dfrac{10^{10}-1+2}{10^{10}-1}=\dfrac{10^{10}-1}{10^{10}-1}+\dfrac{2}{10^{10}-1}\)

\(=1+\dfrac{2}{10^{10}-1}\)

B=\(\dfrac{10^{10}-1}{10^{10}-3}=\)\(\dfrac{10^{10}-3+2}{10^{10}-3}\)=\(\dfrac{10^{10}-3}{10^{10}-3}+\dfrac{2}{10^{10}-3}\)

=\(1+\dfrac{2}{10^{10}-3}\)

\(\dfrac{2}{10^{10}-1}>\dfrac{2}{10^{10}-3}\)
\(\Rightarrow\) A>B
Chúc bạn học tốt tick mik nha
20 tháng 3 2017

d, Vì B=10^1993+1/10^1992+1 > 1 =>10^1993+1/10^1992+1>10^1993+1+9/10^1992+1+9 = 10^1993+10/10^1992+10= 10. (10^1992+1)/10. (10^1991+1) = 10^1992+1/10^1991+1=A Vậy A=B

cau d B>1 ta co tinh chat (\(\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ) B> \(\dfrac{10^{1993}+1+9}{10^{1992}+1+9}\)\(=\dfrac{10^{1993}+10}{10^{1992}+10}\)=\(\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1992}+1}{10^{1991}+1}\)=A

Suy ra B>A(chuc ban hoc goi nhe)

27 tháng 5 2017

Ta có:

\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)

\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)

\(\dfrac{2}{20^{10}-1}< \dfrac{2}{20^{10}-3}\)

\(\Rightarrow1+\dfrac{2}{20^{10}-1}< 1+\dfrac{2}{20^{10}-3}\)

\(\Rightarrow A< B\)

Vậy \(A< B\).

31 tháng 7 2017

Ta có \(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)

\(\Leftrightarrow A=1+\dfrac{2}{20^{10}-1}\)

\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)

\(\Leftrightarrow B=1+\dfrac{2}{20^{10}-3}\)

Vì 1=1 mà\(20^{10}-1>20^{10}-3\Rightarrow\dfrac{2}{20^{10}-1}< \dfrac{2}{20^{10}-3}\Rightarrow1+\dfrac{2}{20^{10}-1}< 1+\dfrac{2}{20^{10}-3}\)

hay A < B

Vậy A < B