Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)
mà \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{5}{12}\)
\(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+\frac{4}{5^5}+...+\frac{11}{5^{12}}\)
\(\Rightarrow\)\(5P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}+...+\frac{11}{5^{11}}\)
\(\Rightarrow\)\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}+...+\frac{1}{5^{11}}-\frac{1}{5^{12}}\)
\(\Rightarrow\)\(20P=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)
\(\Rightarrow\)\(16P=1-\frac{1}{5^{11}}+\frac{1}{5^{12}}-\frac{1}{5^{11}}\)\(< 1\)
\(\Rightarrow\)\(P< \frac{1}{16}\)
P/s: nguyên tác: https://olm.vn/thanhvien/nhatphuonghocgiot
\(S = 1 + 4 + 4^ 2 + ... + 4\)35
\(4S = 4 + 4^2 + 4 ^ 3 + ... + 4\)36
\(4S - S = ( 1 + 4 + 4^ 2 + ... + \)436\()\) \(- ( 1 + 4 + 4 ^ 2 + ... + 4\)35 \()\)
\(3S = 4\)36 \(- 1\)
\(3S = 64\)12 - 11
\(Ta thấy : 64\)12 \(- 1 < 64\)12
\(Do đó : 3S < 64\)12
\(Vậy : 3S < 64\)12
\(\text{Đặt}:A=1+2+3+...+9\)
\(B=11+12+13+..+19\)
SSH của A là : ( 9 - 1) + 1 = 9 (sh)
Tổng A = : \(\frac{\left(1+9\right).9}{2}=45\)
SSH của B là : (19 - 11) + 1 = 9 (sh)
Tổng B = : \(\frac{\left(11+19\right).9}{2}=135\)
\(\Rightarrow\frac{1+2+3+..+9}{11+12+13+..+19}=\frac{45}{135}=\frac{1}{3}\)
Vì \(\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{1+2+3+..+9}{11+12+13+..+19}=\frac{1}{3}\)
ta có \(x=-\frac{1}{8}=-\frac{2}{16}=-2.\frac{1}{16}\)
\(y=\frac{2}{-7}=-\frac{2}{7}=-2.\frac{1}{7}\)
Suy ra \(x>y\)
Bài 1:
ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{100^2}\)
\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)
\(\Rightarrow B< \frac{1}{4}\)
Bài 2:
ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Học tốt nhé bn !!
Ta có tích hai số nguyên cùng dấu lớn hơn 0 và tích hai số nguyên trái dấu nhỏ hơn 0 nên:
Ta có(-12).4 < 0 và (-2).(-3) > 0 nên suy ra (-12).4 < (-2).(-3)