Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-171717/232323 = -10101x17/10101x23 = -17/23
mà -17/23 = -17/23
do đó -17/23 = -171717/232323
\(\dfrac{121212}{131313}=\dfrac{121212:10101}{131313:10101}=\dfrac{12}{13}\)
\(x=\frac{-17}{23}\)
\(y=\frac{-171717}{232323}=\frac{\left(-171717\right):10101}{232323:10101}=\frac{-17}{23}\)
\(\Rightarrow x=y\)
a)-17/23=-171717/232323
b)-265/317<-83/111
c)2002/2003<14/13
d)-27/463<1/3
a: \(-\dfrac{11}{33}< 0< \dfrac{25}{16}\)
b: \(-\dfrac{17}{23}=\dfrac{-171717}{232323}\)
a, -1/4<0
1/100>0
=> -1/4<1/100
b) -11/32=-11.25/ 32.25=-275/800
-25/ 76=-25.11/ 76.11=-275/ 836
=>275/800>275/836
=> -275/800< -275/836
c) -127/128> -1
-1345/1344< -1
=> 127/ -128> -1345/ 1344
d) -171717/ 232323= -17.10101/ 23.10101=-17/23
e) -1/25<0
1/1225>0
=> -1/25< 1/1225
f) 215/216<1
104/103>1
=> 215/216< 104/103
g) -12/19= 19-31/ 19= 1-31/19
-14/17= 17-31/ 17= 1-31/17
mà 31/19< 31/17
=> 1-31/19> 1-31/17
=>-12/19> -14/17
a)
\(\frac{13}{27}=\frac{13.101}{27.101}=\frac{1313}{2727}\)
=> \(\frac{13}{27}=\frac{1313}{2727}\)
b)
\(-\frac{15}{23}=-\frac{15.10101}{23.10101}=-\frac{151515}{232323}\)
=>\(-\frac{15}{23}=-\frac{151515}{232323}\)
a) \(\frac{1313}{2727}=\frac{1313:101}{2727:101}=\frac{13}{27}\)
Vậy \(\frac{13}{27}=\frac{1313}{2727}\)
b) \(-\frac{151515}{232323}=\frac{-151515:10101}{232323:10101}=-\frac{15}{23}\)
Vậy \(-\frac{15}{23}=-\frac{151515}{232323}\)
\(\dfrac{121212}{232323}=\dfrac{12x10101}{23x10101}=\dfrac{12}{23}=\dfrac{12.54}{23.54}=\dfrac{648}{1242}\)
\(\dfrac{4343}{5454}=\dfrac{43x101}{54x101}=\dfrac{43}{54}=\dfrac{43.23}{23.54}=\dfrac{989}{1242}\)
mà \(\dfrac{989}{1242}>\dfrac{648}{1242}\)
Nên \(\dfrac{121212}{232323}< \dfrac{4343}{5454}\)
\(\Rightarrow-\dfrac{121212}{232323}>-\dfrac{4343}{5454}\)
\(\Rightarrow\dfrac{-121212}{232323}>\dfrac{4343}{-5454}\)
Đính chính, có thể so sánh cách 2 nhanh hơn.
...\(\dfrac{12}{23}< \dfrac{12+31}{23+31}=\dfrac{43}{54}\)
\(\Rightarrow\dfrac{121212}{232323}< \dfrac{4343}{5454}\)
\(...\Rightarrow\dfrac{-121212}{232323}>\dfrac{4343}{-5454}\)