\(\sqrt{51}\)va 70+\(\sqrt{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

bằng nhau

20 tháng 7 2017

sai r bạn 

7 tháng 10 2018

Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Mysterious Person, Phạm Hoàng Giang, Phùng Khánh Linh, Dũng Nguyễn, TRẦN MINH HOÀNG, JakiNatsumi, Hoàng Phong, ...

7 tháng 10 2018

Giup minh voi !!! Khôi Bùi​,DƯƠNG PHAN KHÁNH DƯƠNG, Phùng Khánh Linh, Nhã Doanh, hattori heiji, Phạm Hoàng Giang, Dũng Nguyễn, ...

28 tháng 10 2018

a) \(2-2\sqrt{3}\)\(4-\sqrt{15}\)

Giả sử : \(2-2\sqrt{3}\ge4-\sqrt{15}\)

\(\sqrt{15}-2\sqrt{3}\ge2\)

\(\left(\sqrt{15}-2\sqrt{3}\right)^2\ge2^2\)

⇔ 15 - \(12\sqrt{5}+12\) ≥ 4

⇔ 27 -4 ≥ \(12\sqrt{5}\)

⇔ 23 ≥ \(12\sqrt{5}\)

\(23^2\)\(\left(12\sqrt{5}\right)^2\)

⇔ 529 ≥ 720 (sai)

Vậy 2 - \(2\sqrt{3}< 4-\sqrt{15}\)

b) \(\sqrt{11}+2\)\(3+\sqrt{3}\)

Giả sử : \(\sqrt{11}+2\le3+\sqrt{3}\)

\(\sqrt{11}-\sqrt{3}\le1\)

\(\left(\sqrt{11}-\sqrt{3}\right)^2\le1\)

⇔ 14 - \(2\sqrt{33}\) ≤ 1

⇔ 13 ≤ \(2\sqrt{33}\)

\(13^2\le\left(2\sqrt{33}\right)^2\)

⇔ 169 ≤ 132 (sai)

Vậy \(\sqrt{11}+2\ge3+\sqrt{3}\)

28 tháng 10 2018

Nguyễn Thanh Hằng, Dương Nguyễn, Ngô Thành Chung, Khôi Bùi , Trần Nguyễn Bảo Quyên, Tạ Thị Diễm Quỳnh, Nguyễn Quang Minh, Khánh Như Trương Ngọc, Nguyễn Quang Minh, Mysterious Person, Phùng Khánh Linh, JakiNatsumi, DƯƠNG PHAN KHÁNH DƯƠNG, Hoàng Phong, Ribi Nkok Ngok, ...

1: \(\left(\sqrt{3}+\sqrt{7}\right)^2=10+2\sqrt{21}\)

\(\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)

mà 2 căn 21<4 căn 6

nên căn 3+căn 7<2+căn 6

2: \(\sqrt{7}-\sqrt{5}=\dfrac{2}{\sqrt{7}+\sqrt{5}}\)

\(\sqrt{6}-2=\dfrac{2}{\sqrt{6}+2}\)

mà \(\sqrt{7}+\sqrt{5}>\sqrt{6}+2\)

nên \(\sqrt{7}-\sqrt{5}< \sqrt{6}-2\)

3: \(\sqrt{11}-\sqrt{7}=\dfrac{4}{\sqrt{11}+\sqrt{7}}\)

\(\sqrt{7}-\sqrt{3}=\dfrac{4}{\sqrt{7}+\sqrt{3}}\)

mà căn 11>căn 3

nên \(\sqrt{11}-\sqrt{7}< \sqrt{7}-\sqrt{3}\)

12 tháng 9 2016

a ) \(2\sqrt{5}-5\) và \(\sqrt{5}-3\)

Ta có ; \(2\sqrt{5}-5-\left(\sqrt{5}-3\right)\)

         \(=\sqrt{5}-8\)

         \(=\sqrt{5}-\sqrt{64}< 0\)

\(\Rightarrow2\sqrt{5}-5< \sqrt{5}-3\)

Vậy .................

b ) \(\sqrt{17}+\sqrt{26}\) và 9 

Ta có : 

\(\sqrt{17}>\sqrt{16}\)

\(\sqrt{26}>\sqrt{25}\)

\(\Rightarrow\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}=4+5=9\)

Vậy ...

10 tháng 1 2019

<  nha

hoc tot

11 tháng 1 2019

Giả sử \(\sqrt{2009}\ge2\sqrt{2008}-\sqrt{2007}\)

\(\Leftrightarrow\sqrt{2009}-\sqrt{2008}\ge\sqrt{2008}-\sqrt{2007}\)

\(\Leftrightarrow\frac{1}{\sqrt{2009}+\sqrt{2008}}\ge\frac{1}{\sqrt{2008}+\sqrt{2007}}\) (sai)

Vậy \(\sqrt{2009}< 2\sqrt{2008}-\sqrt{2007}\)

22 tháng 10 2019

3+2V2 lớn hơn

13 tháng 9 2016

Giả sử \(\sqrt{2006}+\sqrt{2008}\ge2\sqrt{2007}\)

<=> 4014 + \(2\sqrt{2006×2008}\)\(\ge\)8028

<=> \(\sqrt{2006×2008}\)\(\ge\)2007

<=> \(\sqrt{2007^2-1}\ge2007\)(sai)

Vậy \(\sqrt{2006}+\sqrt{2008}< 2\sqrt{2007}\)

10 tháng 5 2017

đề bài là không dùng máy tính ; hoặc là không khai căn chứ

\(A^2=100.51\)

\(B^2=70^2+2+2.70.\sqrt{2}\)

\(B^2-A^2=70^2-\left(10.7\right)^2+\left(2-2.100\right)+2.70\sqrt{2}\)

\(B^2-A^2=2.70\sqrt{2}-2.99=2\left(70\sqrt{2}-99\right)\)

\(C=70.\sqrt{2};D=99\)

\(C^2=2.70^2\)

\(D^2=99^2=\left(70+29\right)^2\)

\(C^2-D^2=2.70^2-\left(70^2+2.70.29+29^2\right)=70^2-2.70.29-29^2=\left(70-29\right)^2-2.29^2=41^2-2.29^2\)\(C^2-D^2=\left(29+12\right)^2-2.29^2=29^2+12^2+2.29.12=12^2+2.29.12-29^2\)\(C^2-D^2=12^2+2.29.12-12^2-17^2-2.12.17\)\(C^2-D^2=2.12\left(29-17\right)-17^2=2.12^2-17^2\)

\(C^2-D^2=2.12^2-12^2-5^2-2.5.12=12^2-2.5.12-5^2\)

\(C^2-D^2=\left(12-5\right)^2-2.5^2=7^2-2.5^2\)

\(C^2-D^2=5^2+2.2.5+2^2-2.5^2=4.5-5^2+2^2\)

\(C^2-D^2=5\left(4-5\right)+4=4+5.\left(-1\right)=4-5=-1\)

........

=> C^2 -D^2 <0

=>C,D >0

=> C<D => C-D<0

=> B^2 -A^2 <0

A,B >0

=> B<A

kết luận

B<A

10 tháng 5 2017

\(A=10\sqrt{51}\); \(B=70+\sqrt{2}\)

Ta có: \(A^2=5100\)

\(B^2=4900+140\sqrt{2}+2\)

So sánh \(198\)\(140\sqrt{2}\) vì vì trừ 2 vế cho 4902.

Ta có: \(198^2=39204\)

\(\left(140\sqrt{2}\right)^2=39200\)

Vậy A > B (đpcm)