Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{1}{5}\sqrt{150}=\frac{1}{5}\cdot5\sqrt{6}=\sqrt{6}=\frac{1}{3}\cdot\sqrt{6\cdot9}=\frac{1}{3}\sqrt{54}>\frac{1}{3}\sqrt{51}\)
b) Ta có: \(\frac{1}{2}\sqrt{6}=\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}=6\sqrt{\frac{1}{2}}\)
a) Vì \(5,\left(6\right)< 6\)\(\Rightarrow\)\(\frac{51}{9}< \frac{150}{25}\)
\(\Rightarrow\)\(\sqrt{\frac{51}{9}}< \sqrt{\frac{150}{25}}\)
\(\Rightarrow\)\(\frac{1}{3}\sqrt{51}< \frac{1}{5}\sqrt{150}\)
b) Vì \(1,5< 18\)\(\Rightarrow\)\(\frac{6}{4}< \frac{36}{2}\)
\(\Rightarrow\)\(\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}\)
\(\Rightarrow\)\(\frac{1}{2}\sqrt{6}< 6\sqrt{\frac{1}{2}}\)
a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)
\(\sqrt{6}< \sqrt{6,25}=2,5\);
\(\sqrt{12}< \sqrt{12,25}=3,5\);
\(\sqrt{20}< \sqrt{20,25}=4,5\)
=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)
Vậy P < 12
Answer:
ý a, tham khảo bài làm của @xyzquynhdi
\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
a)1/7\(\sqrt{51}\)=\(\sqrt{\frac{51}{49}}\);1/9\(\sqrt{150}=\sqrt{\frac{150}{81}}=\sqrt{\frac{50}{27}}\)
\(\frac{51}{49}=1+\frac{1}{49}+\frac{1}{49}\);\(\frac{50}{27}=1+\frac{23}{27}>1+\frac{23}{36}>\)\(1+\frac{2}{36}=1+\frac{1}{36}+\frac{1}{36}\)
1/49<1/36 nên 51/49<50/27 =>1/7\(\sqrt{51}\)<1/9\(\sqrt{150}\)
b) \(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}\)+\(\sqrt{2015}\)
=>\(\frac{1}{\sqrt{2017}+\sqrt{2016}}< \)\(\frac{1}{\sqrt{2016}+\sqrt{ }2015}\) <=> \(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}\)-\(\sqrt{2015}\)
a, \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\Rightarrow1+1< \sqrt{2}+1\Rightarrow2< \sqrt{2}+1\)
c, \(4>3=>\sqrt{4}>\sqrt{3}=>\sqrt{4}-1>\sqrt{3}-1\Rightarrow1>\sqrt{3}-1\)
d, \(16>11=>\sqrt{16}>\sqrt{11}\Rightarrow4>\sqrt{11}=>4.\left(-3\right)< \sqrt{11}.\left(-3\right)\)
\(=>-12< -3.\sqrt{11}\)
a)2=1+1
Có:12<\(\sqrt{2}^{^{ }2}\)
=> 1<\(\sqrt{2}\)
=>1+1<\(\sqrt{2}+1\)
=>2<\(\sqrt{2}+1\)
c) 10=2.5
Có;\(5=\)\(\sqrt{25}< \sqrt{31}\)
=>\(\sqrt{31}>\sqrt{25}\)
=>\(2.\sqrt{31}>2.\sqrt{25}\)
=>\(2.\sqrt{31}>10\)
b) 1=2-1
Có: \(2=\sqrt{4}>\sqrt{3}\)
=>\(\sqrt{4}-1>\sqrt{3}-1\)
=>\(1>\sqrt{3}-1\)
d) -12=-3.4
Có:\(4=\sqrt{16}>\sqrt{11}\)
=>\(\sqrt{11}< \sqrt{16}\)
=>\(-3.\sqrt{11}>-3.\sqrt{16}\)
=>\(-3.\sqrt{11}>-12\)
a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)
\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)
Vì \(\sqrt{24}< \sqrt{25}\)
=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)
b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)
\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)
=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)
c/ \(16=\sqrt{16^2}\)
\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)
=> \(16>\sqrt{15}.\sqrt{17}\)
d/\(8^2=64=32+32=32+2\sqrt{256}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)
=> \(8>\sqrt{15}+\sqrt{17}\)
đề bài là không dùng máy tính ; hoặc là không khai căn chứ
\(A^2=100.51\)
\(B^2=70^2+2+2.70.\sqrt{2}\)
\(B^2-A^2=70^2-\left(10.7\right)^2+\left(2-2.100\right)+2.70\sqrt{2}\)
\(B^2-A^2=2.70\sqrt{2}-2.99=2\left(70\sqrt{2}-99\right)\)
\(C=70.\sqrt{2};D=99\)
\(C^2=2.70^2\)
\(D^2=99^2=\left(70+29\right)^2\)
\(C^2-D^2=2.70^2-\left(70^2+2.70.29+29^2\right)=70^2-2.70.29-29^2=\left(70-29\right)^2-2.29^2=41^2-2.29^2\)\(C^2-D^2=\left(29+12\right)^2-2.29^2=29^2+12^2+2.29.12=12^2+2.29.12-29^2\)\(C^2-D^2=12^2+2.29.12-12^2-17^2-2.12.17\)\(C^2-D^2=2.12\left(29-17\right)-17^2=2.12^2-17^2\)
\(C^2-D^2=2.12^2-12^2-5^2-2.5.12=12^2-2.5.12-5^2\)
\(C^2-D^2=\left(12-5\right)^2-2.5^2=7^2-2.5^2\)
\(C^2-D^2=5^2+2.2.5+2^2-2.5^2=4.5-5^2+2^2\)
\(C^2-D^2=5\left(4-5\right)+4=4+5.\left(-1\right)=4-5=-1\)
........
=> C^2 -D^2 <0
=>C,D >0
=> C<D => C-D<0
=> B^2 -A^2 <0
A,B >0
=> B<A
kết luận
B<A
\(A=10\sqrt{51}\); \(B=70+\sqrt{2}\)
Ta có: \(A^2=5100\)
\(B^2=4900+140\sqrt{2}+2\)
So sánh \(198\) và \(140\sqrt{2}\) vì vì trừ 2 vế cho 4902.
Ta có: \(198^2=39204\)
\(\left(140\sqrt{2}\right)^2=39200\)
Vậy A > B (đpcm)