Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\frac{7}{6}< |x-\frac{2}{3}|< \frac{26}{9}\)
\(\Rightarrow\frac{21}{18}< |x-\frac{2}{3}|< \frac{52}{18}\)
Rùi tự thay vào
\(\frac{\sqrt{49}}{6}< \left|x-\frac{2}{3}\right|< \frac{26}{\sqrt{81}}\)
\(\Leftrightarrow\frac{7}{6}< \left|x-\frac{2}{3}\right|< \frac{26}{9}\)
\(\Leftrightarrow\frac{7}{6}< 2\le\left|x-\frac{2}{3}\right|\le2< \frac{26}{9}\)
\(\Leftrightarrow\left|x-\frac{2}{3}\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=2\\x-\frac{2}{3}=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=--\frac{4}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{8}{3};-\frac{4}{3}\right\}\)
\(\left(\frac{2}{3}\right)^{x-2}=\left(\frac{16}{81}\right)^{x+1}\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{x-2}=\left[\left(\frac{2}{3}\right)^4\right]^{x+1}\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{x-2}=\left(\frac{2}{3}\right)^{4\left(x+1\right)}\)
\(\Leftrightarrow x-2=4x+4\)
\(\Leftrightarrow-3x=6\Leftrightarrow x=-2\)
\(\left(\frac{2}{3}\right)^x=\frac{16}{81}\)
\(\left(\frac{2}{3}\right)^x=\left(\frac{2}{3}\right)^4\)
\(\Rightarrow x=4\)
\(\left(-\frac{2}{3}\right)^{x-1}=\frac{16}{81}\)
\(\left(-\frac{2}{3}\right)^{x-1}=\frac{\left(-2\right)^4}{3^4}\)
\(\left(-\frac{2}{3}\right)^{x-1}=\left(-\frac{2}{3}\right)^4\)
x - 1 = 4
x = 4 + 1
x = 5
\(1.\frac{\left(-3\right)^x}{81}=-27\Rightarrow\left(-3\right)^x\div\left(-3\right)^4=\left(-3\right)^3\)
\(\Rightarrow\left(-3\right)^x=\left(-3\right)^7\Rightarrow x=7\)
\(2.\sqrt{x-5}-4=5\Rightarrow\sqrt{x-5}=9\Rightarrow\sqrt{x-5}=\sqrt{81}\Rightarrow x-5=81\Rightarrow x=86\)
\(\)
a)\(\left(\frac{-1}{3}\right)^3\cdot x=\frac{1}{81}\) \(< =>\frac{-1}{27}x=\frac{1}{81}\)\(< =>x=\frac{-1}{3}\)
\(\frac{2^x}{3^x}=\frac{81}{16}\)
\(\left(\frac{2}{3}\right)^x=\frac{81}{16}\)
\(\left(\frac{2}{3}\right)^x=\left(\frac{2}{3}\right)^{-4}\)
\(\Rightarrow x=-4\)
\(\frac{2^x}{3^x}=\frac{81}{16}\)
=>\(\left(\frac{2}{3}\right)^x=\left(\frac{2}{3}\right)^{-4}\)
=>x=-4