Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì phương trình nghiệm đúng với mọi x nên tập nghiệm của nó là S = R.
Xét phương trình |x – 3| = 1
TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3
Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)
TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3
Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)
Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4 hay (1) sai và (3) đúng
|x – 1| = 0 ó x – 1 = 0 ó x = 1 nên phương trình |x – 1| = 0 có nghiệm duy nhất hay (2) sai.
Vậy có 1 khẳng định đúng
Đáp án cần chọn là: B
Ta có: x + 2 - 2(x + 1) = -x
⇔ x + 2 - 2x - 2 = -x
⇔ -x = -x ( luôn đúng với mọi x)
Do đó, phương trình đã cho có vô số nghiệm.
Chọn đáp án D
1,
tậ nhiệm là S = { R} R là tập số thực
X = 0
và X = X - 1 ko tương đương
vì một bên x = 0
một bên x= 1/2
1))))) S = { x/ x thuộc R} chữ thuộc viết bằng kì hiệu
2))))) bạn chép sai đề rồi
đề đúng x(x+1) =0
Giải
ở phương trình x= 0 có S={0}
ở phương trình x(x+1) có S={0;-1}
Vì hai phương trình có tập nghiêm khác nhau nên hai phương trinh ko tương đương
Ta có:
+) x + 1 = 0 ó x = -1
+) x + 2 = 0 ó x = -2
Ta có bảng
TH2: x < -2 ta có
|x + 1| - |x + 2| = x + 3
ó (-x – 1) – (-x – 2) = x + 3
ó 1 = x + 3
ó x = -2 (KTM)
TH2: -2 ≤ x ≤ -1 ta có
|x + 1| - |x + 2| = x + 3
ó (-x – 1) – (x + 2) = x + 3
ó -x – 1 – x – 2 = x + 3
ó -2x -3 = x + 3
ó -3x = 6
ó x = -2 (TM)
TH3: x > -1 ta có
|x + 1| - |x + 2| = x + 3
ó (x + 1) – (x + 2) = x + 3
ó x + 1 – x – 2 = x + 3
ó -1 = x + 3
óx = -4 (KTM)
Vậy phương trình có nghiệm duy nhất x = -2
Đáp án cần chọn là: A
Nếu pt là \(x\left(x^2+1\right)=0\) thì:
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\left(vn\right)\end{matrix}\right.\)
Vậy pt có 1 nghiệm