Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình \(tanx = 3\)\( \Leftrightarrow \;x{\rm{ }} \approx {\rm{ }}1,25{\rm{ }} + {\rm{ }}k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}\).
Do \( - \frac{\pi }{2} < x < \frac{{7\pi }}{3} \Leftrightarrow - \frac{\pi }{2} < 1,25{\rm{ }} + {\rm{ }}k\pi < \frac{{7\pi }}{3}\)\( \Leftrightarrow - 0,9 < k < 1,94,\)\(k\; \in \;\mathbb{Z}\).
Mà k ∈ ℤ nên k ∈ {0; 1}.
Vậy có 2 nghiệm của phương trình đã cho nằm trong khoảng \(\left( { - \frac{\pi }{2};\frac{{7\pi }}{3}} \right)\).
Đáp án: B
\(tanx=-tan\dfrac{\pi}{5}\)
\(\Leftrightarrow tanx=tan\left(-\dfrac{\pi}{5}\right)\)
\(\Leftrightarrow x=-\dfrac{\pi}{5}+k\pi\)
Mình quên mất, nó nằm trong khoảng (π/2; π) nha, mình xin lỗi
tanx=tan3pi/11
x=3pi/11+kpi
\(\frac{\pi}{4}< \frac{3\pi}{11}+k\pi< 2\pi\)
\(\frac{1}{4}< \frac{3}{11}+k< 2\)
\(\frac{1}{4}-\frac{3}{11}< k< 2-\frac{3}{11}\)
\(-\frac{1}{44}< k< \frac{19}{11}\)
\(\Rightarrow k=0;k=1\)
Vậy chọn B
\(tanx=tan\left(\dfrac{3\pi}{11}\right)\Leftrightarrow x=\dfrac{3\pi}{11}+k\pi\)
\(\dfrac{\pi}{4}< x< 2\pi\Rightarrow\dfrac{\pi}{4}< \dfrac{3\pi}{11}+k\pi< 2\pi\)
\(\Rightarrow-\dfrac{1}{44}< k< \dfrac{19}{11}\Rightarrow k=\left\{0;1\right\}\)
\(\Rightarrow\) Phương trình có 2 nghiệm trên khoảng đã cho (ứng với 2 giá trị của k)
em cảm ơn cô ạ