Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Để M là số nguyên thì \(2n-7⋮n-5\)
\(\Leftrightarrow2n-10+3⋮n-5\)
mà \(2n-10⋮n-5\)
nên \(3⋮n-5\)
\(\Leftrightarrow n-5\inƯ\left(3\right)\)
\(\Leftrightarrow n-5\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{6;4;8;2\right\}\)
Vậy: \(n\in\left\{6;4;8;2\right\}\)
a) Ta có: \(\left|x-3\right|=2x+4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x+4\left(x\ge3\right)\\x-3=-2x-4\left(x< 3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2x=4+3\\x+2x=-4+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=7\\3x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\left(loại\right)\\x=-\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x=-\dfrac{1}{3}\)
a : 7 dư 2 \(\Rightarrow\) a = 7k + 2
b : 7 dư 3 \(\Rightarrow\) b = 7h + 3
\(\Rightarrow\) a + b = (7k + 2) + (7h + 3) = (7k + 7h) + (2 + 3) = 7(k + h) + 5
Vậy, a + b : 7 dư 5
a:7 dư 2 => a=7k+2
b:7 dư 3 =>b=7h+3
a+b=7k+2+7h+3=7(k+h)+5
=> a+b chia 7 dư 5
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
Bài 1:
a) \(3\left(x+5\right)=x-7\)
\(\Leftrightarrow3x+15=x-7\)
\(\Leftrightarrow3x+15-x=-7\)
\(\Leftrightarrow2x+15=-7\)
\(\Leftrightarrow2x=-22\)
\(\Leftrightarrow x=-11\)
Vậy \(x=-11\)
Bài 2:
\(\left|x+2\right|-14=-9\)
\(\Leftrightarrow\left|x+2\right|=5\)
Chia 2 trường hợp:
\(\Leftrightarrow\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-7\end{cases}}}\)
Vậy \(x\in\left\{3;-7\right\}\)
Hơi vội, sai thì thôi nhé!
a+5 chia hết cho 7
b+4 chia hết cho 7
=> a+5+b+4=a+b+9 chia hết cho 7
a+b+9=(a+b)+2+7 chia hết cho 7 => (a+b)+2 chia hết cho 7 => a+b chia 7 dư 5
****************************************************************
Gọi \(x,y,z\) lần lượt là thương của các phép chia: \(m:7;n:7;p:7\)
Theo đề bài ta có: \(\left\{{}\begin{matrix}m=7x+4\\n=7y+2\\p=7z+5\end{matrix}\right.\) (1)
a) Ta có: \(m+np=7x+5+\left(7y+2\right)\left(7z+5\right)\) (theo 1)
\(=7x+5+49yz+14z+35y+10\)
\(=7x+49yz+14z+35y+14+1\)
\(=7\left(x+7yz+2z+5y+2\right)+1\)
Vậy số dư khi chia \(m+np\) cho 7 là: 1
b) Ta có: \(3m+2n+mp=3\left(7x+4\right)+2\left(7y+2\right)+\left(7x+4\right)\left(7z+5\right)\)
\(=21x+12+14y+4+49xz+28z+35x+20\)
\(=21x+14y+49xz+28z+35x+35+1\)
\(=7\left(3x+2y+7xz+5x+5\right)+1\)
Vậy số dư 3m+2n+mp chia cho 7 là: 1
c) Ta có: \(\left(m+2n\right)\left(2m+p\right)\)
\(=\left[7x+4+2\left(7y+2\right)\right]\left[2\left(7x+4\right)+7z+5\right]\)
\(=\left(7x+14y+7+1\right)\left(7z+14x+7+6\right)\) (2)
Đặt \(\left\{{}\begin{matrix}a=7x+14y+7⋮7\\b=7z+14x+7⋮7\end{matrix}\right.\)
(2)\(=\left(a+1\right)\left(b+6\right)=ab+6a+b+6\)
vì \(ab+6a+b⋮7\) nên (2) chia cho 7 sẽ dư 6
Vậy dư của \(\left(m+2\right)\left(2m+p\right)\) là 6