Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x30 + x4 + x2015 + 1 = f(x) . Ta có : f(1) = 130 + 14 + 12015 + 1 = 4 ; f(-1) = (-1)30 + (-1)4 + (-1)2015 + 1 = 0.
Vì đa thức chia bậc 2 nên đa thức dư bậc 1 có dạng ax + b. Do đó :
f(x) = (x2 -1).q(x) + ax + b.
f(1) = (12 - 1).q(x) + a.1 + b = a + b ; f(-1) = ((-1)2 - 1).q(x) + a.(-1) + b = - a + b
Vậy a + b = 4 và - a + b = 0. Giải ra đc a = b = 2. Suy ra đa thức dư
HD
Ghép tạo thừa số (x+1)
làm đi không làm dduocj mình mới làm chi tiết
có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5
f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2
do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−af(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a
=(x2+1)(C(x).x+C(x)+a)+bx+c−a=(x2+1)(C(x).x+C(x)+a)+bx+c−a
Vậy bx+c−a=x+2⇒\hept{b=1c−a=2bx+c−a=x+2⇒\hept{b=1c−a=2
mặt khác ta có f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4
vậy số dư trong phép chia f(x) cho x3+x2+x+1x3+x2+x+1là 2x2+x+4
a) Ta có:
\(A=1+2+2^2+2^3+...+2^{2015}\)
\(A=\left(1+2+2^2\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)-2^{2016}\)
\(A=7+...+7\cdot2^{2014}-2^{2016}\)
\(A=7\cdot\left(1+...+2^{2014}\right)-2^{2016}\)
Lại có: \(2^4\equiv2\left(mod7\right)\Leftrightarrow\left(2^4\right)^{504}=2^{2016}\equiv2\left(mod7\right)\)
\(\Rightarrow A\equiv-2\left(mod7\right)\)
Vậy A chia 7 dư -2 hoặc 5
b) \(PT\Leftrightarrow x\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow x\in\left\{0;-2-;-1\right\}\)
=> Tổng các nghiệm là: -3
Lời giải:
$x^{2015}+x^3+x^4=(x^{2015}-x^3)+(x^4-1)+(2x^3+2x)+2-2x$
$=x^3(x^{2012}-1)+(x^2-1)(x^2+1)+2x(x^2+1)+2-2x$
$=x^3[(x^4)^{503}-1]+(x^2-1)(x^2+1)+2x(x^2+1)+2-2x$
$=x^3(x^4-1)[(x^4)^{502}+...+x^4+1]+(x^2-1)(x^2+1)+2x(x^2+1)+2-2x$
$=x^3(x^2-1)(x^2+1)[(x^4)^{502}+...+x^4+1]+(x^2-1)(x^2+1)+2x(x^2+1)+2-2x$
$\Rightarrow x^{2015}+x^3+x^4$ chia $x^2+1$ dư $2-2x$